Acid Sulfate Soil Management Plan for Concord High School

5 Stanley Street, Concord NSW 2137

29 May 2023

Prepared for School Infrastructure NSW

Version: 2.0 Reference: 20220522

HEAD OFFICE: 13000 43684 (13000 iEnvi) PO Box 2303 Tingalpa QLD 4173

> iEnvironmental Australia Ptv I td ABN:65625493478 info@ienvi.com.au

Hendra QLD 4011

Document Record

Rev.	Date	Reviewed By	Action	Issued To	Issue Date	Authorisation Signature
0.1	1/05/2023	Sukie Cho	Draft Report Template			
1.0	10/05/2023	Michael Nicholls	Revisions and Final	Client	23/05/2023	0 01
2.0	29/05/2023	SINSW	Revised site address	Client	29/05/2023	M. L.

Main Author:	Michael Nicholls		
Qualifications:	>20 years, B Env Sc, CEnvP (No. 0831) SC Specialist (No. 40037)		
Peer Reviewer:	Jacqui Thompson		
Qualifications:	> 12 years, Dip Ed		
Technical/Final Reviewer:	Michael Nicholls		
Qualifications:	>20 years, B Env Sc, CEnvP (No. 0831) SC Specialist (No. 40037)		

Document Title:	Acid Sulfate soil Management Plan for Concord High School		
Site Address:	5 Stanley Street, Concord NSW 2137		
Site Lot and Plan:	1/-/DP1114919 1/-/DP60167 19/-/DP8687 3/-/DP1114919 18/-/DP8687 20/-/DP8687 15/-/DP8687 2/-/DP1114919		
Central Site Coordinates EPSG:4283 GDA94	-33.864108, 151.109308		
Approx. Site Size (Ha):	3.38		
Remediation Location:	Concord High School - new development areas		
Approx. Area of Remediation (Ha):	3.38 (areas to be disturbed during development upgrades)		
Project Number:	20220303		
Project Type:	Acid Sulfate Soil Management Plan		
Project Type Abbreviation:	ASSMP		
Client Full Name:	School Infrastructure New South Wales		
Client Short Name:	SINSW		
Document Revision No.	2.0		

iEnvironmental Australia Pty Ltd ABN: 65 625 493 478

Table of Contents

1 Executive Summary	8
2 Purpose	9
3 Introduction	9
3.1 Responsibilities for this ASSMP	10
3.2 Description of the Development	10
3.3 Scope of Work	10
3.4 Regulatory Guidelines for this ASSMP	11
4 Background	12
4.1 Site Identification	12
4.2 Site Description	12
4.3 Surrounding Land Use and Water Bodies	13
4.4 Future Land Use	13
4.5 Surface Water, Drainage and Flood Potential	13
4.6 Site Regional Geology and Hydrogeology	13
4.7 Site Hydrogeology and Groundwater Characteristics	14
5 Description of Acid Sulfate Soil Condition	15
6 Management Activities	15
6.1 Construction Activities	15
6.2 Potential Environmental Impacts	15
7 Inspection, Maintenance, Environmental Sampling, Analysis and Reporting	16
7.1 Control Measures for Development Construction Activities within the PASSA	16
7.2 Excavated PASS Field Testing Requirements & Lime Application Rate	17
7.3 Management of Stockpiled Soils	18
7.4 Contingency Measures	19
7.4.1 Over-Exposure of Excavated Trenches, Pits and Stockpiled Material in the PASSA	19
7.4.2 Acid Sulphate Soil Spill	19
7.4.3 Rainfall Inundating Stockpiles	19
7.4.4 Performance Criteria	20
7.4.5 Contingency Plan	21
7.5 Approvals and Compliance Requirements	22
7.5.1 Approval and Requirements for Works	22
7.6 Community Stakeholder Plan	22
7.7 Staged Progress Reporting	22
7.8 Ongoing Environmental Management Requirements	22
8 References	23
9 Limitations	25
10 Attachments	28

Abbreviations

Term	Definition	
AASS	Actual Acid Sulfate Soil	
ACM	Asbestos containing material	
AHD	Australian Height Datum (metres above mean sea level)	
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand	
AS	Australian Standard	
Asbestos HSLs	NEPM ASC/WA DoH Health screening levels for asbestos contamination in soil. NEPM ASC Schedule B1, Table 7	
ASLP	Australian Standard Leaching Procedure (Australian Standards AS4439.2 and 44396.3)	
ASS	Acid Sulfate Soil	
ASSMP	Acid Sulfate Soil Management Plan	
CEnvP	Certified Environmental Practitioner	
CEnvP SC Specialist	Certified Environmental Practitioner Site Contamination Specialist	
COC	Chain of Custody	
CoCB	City of Canada Bay	
CSM	Conceptual Site Model	
DP	Deposited Plan	
DQIs	Data Quality Indicators	
DQOs	Data Quality Objectives	
DSI	Detailed Site Investigation	
EIL(s)	NEPM ASC Ecological Investigation Levels for selected metals and organic substances in the top 2 m of soil and are applicable for assessing risk to terrestrial ecosystems	
EMP	Environmental Management Plan	
EPA	Environmental Protection Authority	
EPL	Environmental Protection Licence	
ESL(s)	NEPM ASC Ecological Screening Levels	
GPR	Ground penetrating radar	
HESP	Health and Environmental Safety Plan	
HIL(s)	NEPM ASC Health Investigation Levels	
HSL(s)	NEPM ASC Health Screening Levels (HSLs)	
iEnvi	iEnvironmental Australia Pty Ltd	
JSEA	Job Safety Environmental Analysis	
LAA	Licenced asbestos assessor	
mAHD	Elevation in metres above seal level based on Australian Height Datum	
МВО	Monosulfidic black ooze	
mbgs	metres below ground surface	
NATA	National Association of Testing Authorities	
NEPC	National Environment Protection Council	
NEPM ASC	National Environment Protection (Assessment of Site Contamination) Measure 1999 (amended April 2013)	

Term	Definition	
NHMRC	National Health and Medical Research Council	
PASS	Potential Acid Sulfate Soil	
PCoC	Potential Contaminants of Concern	
PFAS	Perfluoroalkyl and Polyfluoroalkyl Substances	
PFOS	Perfluorooctanesulfonic Acid	
PID	Photoionisation device	
PPE	Personal Protective Equipment	
PSI	Preliminary Site Investigation	
QAQC	Quality Assurance and Quality Control	
RAP	Remediation Action Plan	
RPD	Relative Percent Difference	
SAQP	Sampling and Analysis Quality Plan	
SINSW	School Infrastructure New South Wales	
SWMS	Safe Work Method Statement	
TBC	to be confirmed	
the Client	School Infrastructure New South Wales	
the site	5 Stanley Street, Concord NSW 2137	
USCS	Unified Soil Classification System	

1 Executive Summary

iEnvironmental Australia Pty Ltd (iEnvi) was engaged by School Infrastructure New South Wales (SINSW; the Client) to complete this Acid Sulfate Soil Management Plan (ASSMP) relating to the management of actual acid sulfate soil (AASS) and potential acid sulfate soil (PASS) during upgrade development works at Concord High School, 5 Stanley Street, Concord NSW 2137 (the site; Concord HS).

Concord HS is located in a residential setting. Upgrades to the HS will include the demolition of old buildings and services, resurfacing and installation of new buildings and new underground services.

This ASSMP relates to soil in the eastern portion of the site (refer to Figures 2 and 3) that has the potential to contain acid sulfate soil (ASS). This area is referred to as the Potential Acid Sulfate Soil Area (PASSA).

Previous investigations have not detected acid sulfate soil, however soil at depth > 1.0 m depth near the eastern boundary of the site has the potential to be acid sulfate soil based on it overlapping the Acid Sulfate Soil Class 2 zone in the Canada Bay Local Environmental Plan 2013.

If this soil in the PASSA (Refer to Figures 2) is to be disturbed or exposed at > 1.0 m depth during development, the soil should be field tested by an environmental consultant for pH_f and pH_{fox} to determine the required management under this ASSMP.

A site remediation action plan (RAP) for management of soil during and after construction has additional soil and groundwater monitoring and testing requirements that should also be reviewed.

The ASS management strategies during construction will include:

- avoiding ASS disturbances, where possible
- field assessment and laboratory analysis of potential ASS materials excavated or exposed at > 1.0 m depth in the PASSA including soil and groundwater before disposal, or reuse
- treatment and contained storage of excavated ASS materials
- monitoring of groundwater in accordance with the RAP
- supervision by a suitably qualified environmental practitioner, should any excavation works > 1.0 m depth in the PASSA

The Client project manager, site construction manager and future construction workers should be aware of this ASSMP. Any workers or contractors conducting works that will penetrate the ground

surface at the site should be made aware of the responsibilities within this ASSMP. This ASSMP may need updating periodically as per the detailed requirements within.

The proposed development works will also be completed under a remediation action plan (RAP; iEnvi, 2023b) that has been prepared for the site.

2 Purpose

The purpose of this ASSMP is to provide safe management guidance of potential and actual acid sulfate soil (PASS/AASS) during the proposed development works.

The principal elements of this ASSMP include:

- review the conditions of the site at the time of preparation of this ASSMP, and the proposed development construction and disturbance of the site and how ASS may be disturbed during the process
- detail a method for soil management during development construction at the site
- detail a method for water monitoring during development construction at the site
- provide a plan for ongoing management of ASS at the site
- assign responsibilities for the implementation of this ASSMP
- provide a plan for underground excavation or works

3 Introduction

ASS are coastal and near-coastal soil, sediments or other materials containing iron sulphides. ASS is environmentally non-threatening when left undisturbed in anoxic or aqueous conditions, however, may pose risks when exposed to oxygen. Iron sulphides release sulfuric acid and soluble iron when oxidised, threatening natural and built environments as well as potentially mobilising additional pollutants within the soil.

ASS can be classified as either actual or potential acid sulfate soil (PASS); actual acid sulfate soil (AAS) is those that have been exposed to oxygen and produce sulfuric acid whereas PASS is those that can potentially produce sulfuric acid if exposed to oxygen.

Potential impacts from disturbance and oxidation of PASS may include:

- deoxygenation of waterways causing harm to of aquatic organisms
- acidification of soil, surface water and / or groundwater
- mobilisation of heavy metals in soil and metalloids into groundwater and/or surface water
- corrosion of structures

The soil in the PASSA is within the Acid Sulfate Soil Class 2 mapped zone in the Canada Bay Local Environmental Plan 2013.

Shallow soil (fill) in this area has been tested for ASS and found not to have ASS/PASS characteristics, however deeper soil has the potential to be ASS and require management. This should be confirmed in the PASSA by field tests by an environmental consultant for soil exposed or removed in the PASSA that is > 1.0 mbgs, which shall confirm the required management under this ASSMP.

3.1 Responsibilities for this ASSMP

The following Individuals are assigned to implementing this ASSMP until details are updated by addendum.

Table 1: Responsibilities for this ASSMP

Person/Role	Responsibility		
School Infrastructure NSW (SINSW)	Engagement of all contractors and consultants for the works required.		
City of Canada Bay Council (CoCB)	Ensure all contractors and parties involved in the development works are aware of the requirements of this ASSMP.		
Remediation Contractors	Treatment and safe excavation, movement and disposal of soil in accordance with the ASSMP.		
Environmental Consultant	Complete field sampling of ASS/PASS and advice on treatment rates to comply with this ASSMP and management requirements.		

This ASSMP will be effective from the date of this report, and ongoing until the development project is completed. All parties involved should review and sign the record that this ASSMP has been reviewed (Appendix A).

3.2 Description of the Development

In summary, the planned development works are outlined as:

- · demolition of some of the school buildings;
- construction of new buildings and associated structures;
- installation of underground services to connect to the new buildings; and
- landscaping per the design.

Concept design plans for the project are provided in Appendix G. An outline of where the PASS overlaps the current site and the development plan is provided in Figures 2 and 3.

3.3 Scope of Work

To achieve the objectives, the following scope of work was undertaken:

Information Review:

review of available environmental and construction plan information

Acid Sulfate Soil Management Plan (ASSMP):

The ASSMP will include:

- the requirements for acid sulfate soil management during the planning, implementation, evaluation and construction activities
- the responsibilities for implementing the ASSMP
- the Project Delivery Standards (PDS) including environmental controls regarding acid sulfate soils to ensure that project objectives and targets are achieved
- an overview of the environmental monitoring programs and contingency plans and associated management actions
- review and sign off by a Certified Environmental Practitioner (Contaminated Sites Specialist) CEnvP SC Specialist

3.4 Regulatory Guidelines for this ASSMP

The preparation of this ASSMP was undertaken and should be implemented with reference to (but not limited to) the following legislation, regulatory guidance documents and standards:

- DSE VIC (2010) Victorian Best Practice Guidelines for Assessing and Managing Coastal Acid Sulfate Soils (October 2010) Department of Sustainability and Environment
- National Environmental Protection Council (NEPC) (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended April 2013)
- NHMRC & NRMMC (2011). Australian Drinking Water Guidelines (ADWG) National Health and Medical Research Council & Natural Resource Management Ministerial Council
- NSW Department of Agriculture (1998) Acid Sulfate Soils Manual Acid Sulfate Soil
 Management Advisory Committee
- NSW Department of Environment and Conservation (DEC) (2007) Guidelines for the Assessment and Management of Groundwater Contamination (March 2007)
- NSW Department of Urban Affairs and Planning (1998). Managing Land Contamination:
 Planning Guidelines: SEPP 55 Remediation of Land, (August 1998)
- NSW Environment Protection Authority (EPA) (2015). Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997 (July 2015)
- NSW Government (2013). Canada Bay Local Environmental Plan 2013
- NSW Office of Environment and Heritage (2011). Guidelines for Consultants Reporting on Contaminated Sites (2011). NSW Office of Environment and Heritage
- Standards Australia (2009) Piling Design and Installation AS 2159-2009 (November 2009)

- NSW EPA (2014). Waste Classification Guidelines Part 4: Acid Sulfate Soils (November 2014)
- NSW Acid Sulfate Soil Management Advisory Committee Acid Sulfate Soil Manual (August 1998)

4 Background

4.1 Site Identification

The following information summarises the identification of the site. The site location can be viewed in Figure 1, and site layout in Figure 2.

Table 2: Site Identification Details

Site Address:	5 Stanley Street, Concord NSW 2137		
Lot and DP Number:	Lots 1, 2 and 3, on DP1114919 Lot 1 on DP60167 Lots 15, 18, 19 and 20 on DP8687		
Site Size:	3.38 Ha		
Property Owner:	Minister for Education		
Site Operator:	Education NSW (Concord High School)		
Site Use:	Secondary School		
NEPM ASC Site Use Type:	recreational		
Future NEPM ASC Site Use Type:	recreational		
Current and Recent Activities at Site:	Secondary School		
Historical Activities at Site (if known):	tannery		
Futures Use (if known):	continuing use as a Secondary School		
Surrounding Land Use:	low density residential, recreational		
Local Government Area:	City of Canada Bay Council		
Current Zoning:	R3 - Medium Density Residential		
Nearest Capital/Major City:	Sydney, NSW		
Distance from nearest CBD:	11 km W of Sydney, NSW		
Central Site Coordinates EPSG:4283 GDA94	-33.86,4108, 151.109308		
Site Elevation (approximate)	5 mAHD		

4.2 Site Description

The site is Concord HS, which is an operating secondary school owned by the Department of Education (Minister for Education).

An area in the east of the site (refer to Figures 2 and 3) may contain ASS below fill material. The site does have contaminated soil and groundwater that is considered safe if undisturbed and controlled under the Asbestos in Grounds Management Plan (WSP 2020).

Further information relating to the site and contaminated material are outlined in the RAP (iEnvi, 2023b).

4.3 Surrounding Land Use and Water Bodies

The site is zoned R3 - Medium Density Residential. Surrounding land use includes public recreation, and low density residential land use (refer to Figure 1). The surrounding land uses are described in the table below.

Table 3: Surrounding Land Use

Direction	Land Use or Activity		
North	Site is bordered by Crane Street, followed by medium density residential dwellings.		
East Site is bordered by recreational land (Cintra Park, St Lukes Park) consisting of oval, hockey, netball and tennis facilities. This is followed by residential land use.			
South	Site is bordered by Stanley Street, followed by the southeastern portion of St Luke's Park, residential land use and Concord Oval.		
West	Site is bordered by residential dwellings, followed by Burwood Road, Concord Public School and residential land use.		
Nearest Surface Water Bodies:	The nearest surface water body is an unnamed concrete-lined stormwater canal 150 m east of the site which runs into Parramatta River, 600 m NE of the site.		

4.4 Future Land Use

The land use will continue as a High School.

4.5 Surface Water, Drainage and Flood Potential

The nearest (downgradient) surface water body likely to receive surface water or groundwater from the site is the concrete-lined stormwater canal located approximately 150 m east of the site. The canal flows into the Parramatta River 600 m northeast of the site. This eventually flows into the Sydney Harbour approximately 8 km northeast of the site.

The approximate average surface elevation at the site is 5 mAHD.

The site surface is relatively flat. However, the natural gradient in the area slopes gently from west to east/northeast.

The site is not within the flood hazard area identified by the City of Canada Bay.

4.6 Site Regional Geology and Hydrogeology

According to the Atlas of Australian Soils, the landscape and soil at the site are classified as:

 Kurosols - Gently rolling to rounded hilly country with some steep slopes and broad valleys: chief soils are hard acidic red soils with hard neutral and acidic yellow mottled

soils on lower slopes and in valleys. Associated are small areas of various soils including on some ridges, on some slopes, in saddles and some mid-slope positions, and some low-lying swampy areas of soils and soils with peaty surfaces.

The Atlas of Australian Acid Sulfate Soils predicts that while most of the site would be considered Class 5 Acid Sulfate Soils, the northeastern corner/eastern side of the site is classified as Class 2. This outlines that works below the natural ground surface may present an environmental risk and any works by which the water table is likely to be lowered present an environmental risk.

The underlying regional geology beneath the site is likely to consist of:

- Ashfield shale black to light grey shale and laminate from the Middle Triassic
- anthropogenic deposits (reclaimed estuarine areas) the natural surface elevation has been raised through infill activities over former estuarine swamps and subaqueous estuarine margins

The Hydrogeology Map of Australia Commonwealth of Australia (Geoscience Australia) describes aquifers in the area as porous, extensive aquifers of low to moderate productivity.

The groundwater flow direction is inferred to be towards the Parramatta River north west of the site, which may result in flow direction being influenced by tidal variation. The groundwater table was encountered at approximately 1.5 m to 3.0 m below level surfaces at the site.

Drilling indicated a general soil profile that included:

- 0 to 1.5 mbgs (and up to 3.5 mbgs): Sandy or silty clay FILL
- > 1.5 mbgs: grey and pale brown clays of medium plasticity NATURAL

4.7 Site Hydrogeology and Groundwater Characteristics

Previous investigations indicate the following hydrogeological and groundwater characteristics at the site:

- generally very low recharge in wells was observed during sampling and aquifer slug tests in the shallow clay aquifer;
- groundwater levels were approximately 1.8 to 3.8 metres below ground surface (mbgs) and ranged between 3 to 8 m AHD;
- based on the results of the level survey completed, the water level varied significantly with MW04 being an outlier and groundwater showing an east direction with a skew to the south east. The groundwater level gradient was calculated to be 0.004 (m_v/m_n);
- based on level survey data and accounting for known groundwater receptors to the east and northeast, the groundwater flow direction appeared to be to the east direction (refer to Figure 3). Previous hydraulic testing indicated groundwater horizontal velocity as 0.11 metres per year (m/year) toward the east. Based on the nearest surface water receptor (the Stormwater Canal to the east) being approximately 150 m east of the site, the

estimated timeframe for groundwater t:o migrate from the site to the nearest surface water body would be 1388.9 years.

5 Description of Acid Sulfate Soil Condition

No testing has confirmed the presence of ASS at the site, however, there is considered a potential of ASS to be present in the east of site which is located within the PASSA, an area of the site overlapping the Acid Sulfate Soil Class 2 zone in the Canada Bay Local Environmental Plan 2013 (refer to Figures 2 and 3).

6 Management Activities

The project involves the demolition of some existing buildings, the installation of new buildings and footings, and the placement of new underground services. More detail is provided in Section 3.2. An illustration on the proposed development area that overlaps the PASS is provided in Figure 3.

6.1 Construction Activities

The following construction activities may potentially impact on any ASS soils that may occur in the PASSA:

- excavations of trenches for services
- deep excavation for levelling and moving soil
- · piling/footing excavations for building support
- groundwater dewatering

If any of the aforementioned activities are undertaken during the redevelopment works, the excavated soil should be assessed by a suitably qualified environmental practitioner to prevent any potentially adverse environmental impacts.

6.2 Potential Environmental Impacts

The following consequences need to be considered during construction in an ASS environment:

- exposure and oxidation of excavated PASS material and the consequent discharge of generated acid including acid leachate
- release of acidic subsurface water or acidification of groundwater during the excavation
- ongoing oxidation of exposed PASS and the consequent generation of acidic groundwater
- additional requirements for the management and disposal of excavated soil

Numerous aquatic and marine organisms are extremely sensitive to acid drainage, therefore as a result, acid leachates released may have serious environmental impacts including:

- dissolved metals in acid leachates can be poisonous to fish and aquatic plants and to both aquatic and terrestrial life forms
- sulphate salts released can increase the salinity of freshwater
- acidic sediment may fix phosphates and other nutrients which prevents their uptake by plants

To actively prevent and manage potential impacts, adequate assessment and appropriate management including monitoring programs will ensure such impacts will not occur. The risk of groundwater transport of released dissolved metal contaminants to the nearest surface water receptor is considered low (iEnvi, 2023a), however, groundwater is a protected beneficial use and it is an offence under the Contaminated Land Management Act 1997 to cause contamination of land.

7 Inspection, Maintenance, Environmental Sampling, Analysis and Reporting

The following risk and management controls have been identified for the proposed construction and future operation of the site relevant to PASS soils. At the site, topsoils are fill soils, which are underlain by light brown and grey clay soils that may be potentially PASS. The visual marker of soil colour will be the easiest way of managing potential risk.

7.1 Control Measures for Development Construction Activities within the PASSA

Risks and controls associated with ASS required during the development construction period within the PASSA are outlined in the table below.

Table 4: Identified ASS Risks at Site During Construction in the PASSA

Activity / Risk	Area/Volume Affected	Risk Identification	Management to be Adopted	Who is Responsible
Cut and Fill Disturbance of Soil including Pilings/Footings	All disturbed soils	PASS soil may oxidise and release metals	Exposed and stockpiled soil to be tested for pH _{FOX} and pH _F and management to be applied in accordance with Table 5.	Construction Operations Manager / Environmental Consultant
General PASS Management and Compliance	All soil excavated or exposed.	Field testing and visual observation of red soil.	In accordance with this ASSMP. A PASS validation report will be required at the end of each construction event with records of excavation, soil quality, testing, tracking and management, insitu dosing and final disposal location information.	Construction Operations Manager / Environmental Consultant
Drainage from site	Water draining during/after rainfall from site.	Turbid or discoloured water. Monitoring results triggering risk in accordance with Table 5.	In accordance with Table 5.	Construction Operations Manager / Environmental Consultant

Activity / Risk	Area/Volume Affected	Risk Identification	Management to be Adopted	Who is Responsible
Groundwater quality	Groundwater on and offsite (within 50 m of site)	Monitoring results triggering risk in accordance with Table 5.	In accordance with Table 5.	Construction Operations Manager / Environmental Consultant

7.2 Excavated PASS Field Testing Requirements & Lime Application Rate

Field testing and lime application, as well as soil tracking should be conducted by the Environmental Consultant.

Management of PASS should be conducted in accordance with this ASSMP, the Acid Sulfate Soil Manual (NSW EPA 1998) and Victorian Best Practice Guidelines for Assessing and Managing Coastal Acid Sulfate Soils (DSE VIC 2010).

Soil during excavation should be field tested for pH_{FOX} reactions which may indicate PASS, as well as pH_F which may detect ASS if oxidation has occurred by a suitably qualified environmental consultant..

PASS validation will need to be reported in the Validation Report to be completed in accordance with the RAP (iEnvi, 2023b) with records of excavation, soil quality, testing, tracking and management, insitu dosing and final disposal location information.

Table 5: Excavated PASS Field Testing and Lime Application Rate in the PASSA

pH _{FOX} Reaction Rate*	Description*	Risk Identification (in addition to pH _{FOX} testing)	kg lime/tonne soil or kg lime/m³ Safety factor = 1.5^	Additional Management
0	No reaction	Exposed soils may oxidise and release metals.	No treatment.	General soil management as non-PASS Soil. Erosion controls (such as hay bales) to be placed around stockpiles. Open excavations require no special management.
1	Slight reaction	Exposed soils may oxidise and release metals. Monosulfidic black oozes (MBO) are black or grey and gel-like. MBO cannot be stockpiled and should be immediately buried.	1 (stockpile) 0.1 / m² of open excavation/exposed soil.	Soil must be stockpiled or exposed for < 5 days duration. If >5 days, treat at the relevant liming dose. Minimise re-handling. Exposed soil to be tracked with records of duration of exposure, management / lime application procedures used, as well as retesting for pH _{FOX} and pH _F prior to disposal or burial. Erosion controls (such as hay bales) to be placed around stockpiles. If building foundations or assets are to be placed in excavation (open for any duration), excavation wall and base soils require treatment by mixing lime at the relevant dose with excavator fork teeth of top 0.1 m of exposed soil prior to filling.

pH _{FOX} Reaction	Description*	Risk Identification (in addition to	kg lime/tonne soil or kg lime/m³	Additional Management
Rate*		pH _{FOX} testing)	Safety factor = 1.5^	
2	Moderate reaction	Exposed soils may oxidise and release metals. MBO are black or grey	1.5 (stockpile) 0.15 / m² of open excavation/exposed soil.	Soil must be stockpiled or exposed for < 2.5 days duration. If >2.5 days, treat at the relevant liming dose. Minimise re-handling. Exposed soil to be tracked with records of duration
		and gel-like. MBO cannot be stockpiled and should be immediately buried.		of exposure, management / lime application procedures used, as well as retesting for pH _{FOX} and pH _F prior to disposal or burial.
				Erosion controls (such as hay bales) to be placed around stockpiles.
				If building foundations or assets are to be placed in excavation (open for any duration), excavation wall and base soils require treatment by mixing lime at the relevant dose with excavator fork teeth of top 0.1 m of exposed soil prior to filling.
3	High reaction	Exposed soils may oxidise and release metals.	3 (stockpile) 0.3 / m² of open excavation/exposed soil.	Soil must be stockpiled or exposed for < 18 hours duration. If >18 hours, treat at the relevant liming dose. Soil should be placed on HDPE liner so as not to impact soils below stockpile.
		MBO are black or grey and gel-like. MBO cannot be stockpiled and should be immediately buried.		Exposed soil to be tracked with records of duration of exposure, management / lime application procedures used, as well as retesting for pH _{FOX} and pH _F prior to disposal or burial.
				Erosion controls (such as hay bales) to be placed around stockpiles.
				If building foundations or assets are to be placed in excavation (open for any duration), excavation wall and base soils require treatment by mixing lime at the relevant dose with excavator fork teeth of top 0.1 m of exposed soil prior to filling.
4	Extreme reaction, with gas evolution and heat generation usually > 80°C)	Exposed soils may oxidise and release metals. MBO are black or grey	Requires sample laboratory analysis to determine liming rate.	Cover stockpile with HDPE liner, and treat or remove from site within 18 hours. Soil should not be double handled. Soil should be placed on HDPE liner so as not to impact soils below stockpile.
		and gel-like. MBO cannot be stockpiled and should be immediately buried.		Exposed soil to be tracked with records of duration of exposure, management / lime application procedures used, as well as retesting for pH _{FOX} and pH _F prior to disposal or burial.
				Erosion controls (such as hay bales) to be placed around stockpiles.
				If building foundations or assets are to be placed in excavation (open for any duration), excavation wall and base soils require treatment by mixing lime at the relevant dose with excavator fork teeth of top 0.1 m of exposed soil prior to filling

Notes:

7.3 Management of Stockpiled Soils

The duration of stockpiling should be minimised in accordance with Table 4.

^{*}Reaction Rates and Description per DSE VIC 2010, Table Appendix B2
^Liming rates and stockpile management from the Acid Sulfate Soil Management Manual and ESA report.
MBO: a category of acid sulfate soil, usually dark-grey to black in colour, that has a gel-like texture and is enriched by highly reactive iron monsulfides (FeS)

and should not be stockpiled.

Stockpiling that requires double handling should be managed as soil in the more sensitive category that is directly below the row based on pH_{FOX} reaction in

Stockpiling that requires double handling should be managed with additional precautions to minimise oxidation of soil, and apply the more sensitive category that is directly below the row based on pH_{FOX} reaction in Table 4.

All stockpiles of soil excavated from >1.0 m depth within the PASSA should be managed by:

- minimising dust generation and sediment erosion by either cover and/or hay bale drainage filtering in accordance with the RAP
- daily monitoring of stockpiled materials (for pH_F and pH_{FOX}) may be conducted to identify any potential oxidation or acid generation of the stockpiled ASS/PASS
- it is very important to note that MBO (if encountered) cannot be stockpiled

7.4 Contingency Measures

The following contingency measures are to be implemented in the circumstance management procedures prove to be unsuccessful and acid leachate issues arise.

7.4.1 Over-Exposure of Excavated Trenches, Pits and Stockpiled Material in the PASSA

Treatment using lime sufficient to neutralise the total potential acidity of exposed material. A safety factor of 1.5 is included in the calculation of lime required which should ensure sufficient neutralising capacity should the excavation be open for greater than the planned period.

7.4.2 Acid Sulphate Soil Spill

Spillage of ASS should be collected and transferred to the designated stockpile storage area as soon as practicable to ensure surface soil or groundwater and surface water runoff is not adversely impacted.

7.4.3 Rainfall Inundating Stockpiles

Cover the stockpiles to prevent excessive rainfall accumulation, undertake water quality field readings and sampling for laboratory results to ensure water quality is suitable for discharge or requires treatment.

7.4.4 Performance Criteria

The following performance criteria should be evaluated throughout the project stages and records of performance against the criteria included in an end of construction validation report (refer to the RAP). This performance criteria applies to soil excavated at > 1.0 m depth from within the PASSA.

Table 6: ASSMP Performance Criteria

Table 6:	ASSIMP PETIO	rmance Criteria		
Stage	Item	Controls to Be	Records	Performance Indicator
		Implemented		
1. Pre-Construct ion	Surface water and groundwater quality baseline.	Within 1 month of the start of construction groundwater sampling of all wells to be undertaken in accordance with NEPM ASC (NEPC 2013). NATA accredited laboratories to be utilised. CEnvP SC Specialist to review report.	Baseline Water Quality Letter Report required, including all relevant field records.	Sampling conducted prior to construction activity in accordance with the RAP. Controls all applied and sampling report confirming all relevant controls were put in place. Baseline Water Quality Letter Report reviewed and signed by
				CEnvP SC Specialist.
2. Pre-Construct	ASSMP reviewed by Construction Operations Manager and incorporated into Construction Environmental Management Plan (CEMP).	CEMP to refer to ASSMP. ASSMP to be cited by Construction Ops Manager.	Signed ASSMP review acknowledgement record.	2a. ASSMP reviewed and signed by Construction Manager and relevant field staff).
3. During construction daily	Management of PASS	Excavated soil volumes tracked and records logged.	Soil tracking sheet completed for each major soil excavation or movement (refer to RAP).	3a. Soil tracking sheet completed daily for all major movements (refer to RAP)
4. During construction – Imported Fill	Imported fill quality control	Review fill supply report by Environmental Consultant. Track received material meets specified material in supply report and is tracked.	Soil tracking sheet includes inspection of imported fill (refer to RAP).	6a. Soil tracking sheet completed daily for all major movements (refer to RAP). Imported fill to be reviewed as compliant by Environmental Consultant.
5. During construction – Offsite Disposal	Compliant disposal of soil off site (if required)	A soil waste classification report should be completed for the volumes of soil to be transported from site (this can include insitu sampling information). Waste must be transported to a licensed facility. Soil must be manage in accordance with the NSW Waste Classification Guidelines including: Part 1: Classifying waste, Part 4: Acid sulfate soils and Addendum to Part 1: Classifying Waste.	Soil tracking sheet includes soil tracking of waste from site (refer to RAP). Disposal certificates to be retained, and a copy of the waste receiving facility environmental license to be retained for inclusion in the Validation report.	7a. Soil tracking sheet completed daily for all soil movements offsite (refer to RAP). 7b. Soil disposal records to be included in Validation report, and environmental licence of disposal facility.
6. Post Construction	Environmental Consultant Report	Within 1 month after construction and post-construction validation report in accordance with NEPM ASC (NEPC 2013) is to be compiled by the Environmental Consultant to validate performance indicators have been met. Reviewed and signed by a CEnvP SC Specialist.	Validation Report including all environmental related records, evaluating compliance and performance.	8a. NEPM ASC (NEPC 2013) compliant Validation Report to be compiled by the Environmental Consultant to validate performance indicators have been met. 8b. Validation Report reviewed and signed by a CEnvP SC Specialist.

Stage	Item	Controls to Be Implemented	Records	Performance Indicator
7. Future Use of Site	Management of PASS	Excavated soil volumes tracked and records logged by an engaged Environmental Consultant.	Environmental letter reports to document controls and monitoring compliance.	If ASS is confirmed, update this ASSMP for long term use at the site.

7.4.5 Contingency Plan

The contingency plan summarised in the table below is to be implemented where performance criteria (per Table 6) are exceeded or not met.

Table 7: Contingency Plan

Table 7:	Contingency Plan		
Item	Non-Compliance	Contingency Controls to Be Implemented	Records
CP1. PASS over-exposure to air	PASS soil exposed to oxygen in exceedance of criteria in Table 5 or double handled.	Soil should be retested, managed and treated with lime at the rate prescribed in the next more sensitive category in Table 5.	Non-compliance to be recorded in accordance with RAP and letter report as well as records included final validation report.
CP2. PASS treatment in excavation not implemented	PASS soil in excavations was not treated with lime in accordance with lime application rates in Table 5 prior to backfill.	Subject soil to be tested by the Environmental Consultant to determine whether ASS has been generated and poses a potential risk to buried infrastructure/assets, and whether re-excavation and treatment is required.	Non-compliance to be recorded in accordance with RAP and letter report as well as records included final validation report.
CP3. PASS erosion during rainfall	Sediment observed transported from site drainage.	Rainfall drainage surface water sampling by an environmental consultant to be reported and compared to criteria in Table 4. Sediment should be tested and if PASS/ASS is present, then sediment should be excavated and residual soil sampled to validate no residual PASS/ASS exposed to air.	Non-compliance to be recorded in accordance with the RAP and letter report as well as records included final validation report.
CP4. Water Quality	Surface water or groundwater quality exceeds criteria in the RAP during construction.	The requirement for further investigation and delineation is to be assessed by the environmental consultant, and a Tier 1 or 2 risk assessment in accordance with NEPM ASC (NEPC 2013) may be necessary. Sediment controls are reviewed and made compliant.	Non-compliance to be recorded in with the RAP and letter report as well as records included final validation report.
CP5. Soil Disposal from Site	Soil non-compliant disposal - not compliant with Table 6 requirements .	A review of soil disposal tracking, destination and risk should be undertaken by the Environmental Consultant, and further action should be assessed.	Non-compliance to be recorded in accordance with the RAP and letter report as well as records included final validation report.
CP6. Imported Fill (soil)I	Soil that is non-compliant with soil quality reports provided, or no imported fill soil quality report is provided per Table 6 requirements	A review of soil quality including sampling to determine soil quality at a frequency that complies with ASC NEPM. A review of soil quality to be undertaken by the Environmental Consultant, and further action should be assessed.	Non-compliance to be recorded in accordance with the RAP. A soil investigation report should be conducted by the Environmental Consultant.
CP7. Unexpected finds or contamination	Unexpected, previously not characterised soil that is excavated or encountered and is not similar to known soil as described in the RAP.	A review of soil quality including sampling to determine soil quality at a frequency that complies with ASC NEPM. A review of soil management options to be undertaken by the Environmental Consultant, and further action should be assessed.	Non-compliance to be recorded in accordance with the RAP. A soil investigation report should be conducted by the Environmental Consultant.
CP8. Water Quality	Post-construction groundwater quality exceeds criteria in the RAP at a risk threshold beyond previous reporting considerations.	The requirement for further investigation and delineation is to be assessed by the environmental consultant, and a Tier 1 or 2 risk assessment in accordance with NEPM ASC (NEPC 2013) may be necessary. The risk should be assessed with consideration of seasonal variations.	Risks and recommendations to be included in Post-Construction groundwater monitoring event (GME) letter report

7.5 Approvals and Compliance Requirements

7.5.1 Approval and Requirements for Works

This ASSMP is to be reviewed and approved by SINSW. Prior to remedial works commencing notification to regulators will be required including CoCB.

This ASSMP will be effective from the date of this report, and ongoing until the development project is completed. All parties involved should review and sign the record that this ASSMP has been reviewed (Appendix A).

7.6 Community Stakeholder Plan

This shall be managed in accordance with the RAP.

7.7 Staged Progress Reporting

CoCB will be in communication throughout the remediation activities with the Remediation Contractors and Consultants. A copy of witness and hold points and reporting requirements is outlined in the RAP.

7.8 Ongoing Environmental Management Requirements

Any ongoing requirements relating to acid sulfate soil management at the site should be outlined in the Validation Report by the environmental consultant.

8 References

NSW Acid Sulfate Soil Management Advisory Committee (ASSMAC) (1998). Acid Sulfate Soil Manual

ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT.

Aurecon (2021) Concord High School Waste Classification, Oval and part Gardens, 5 Stanley Street, Concord NSW 2137. 14 October 2021.

DSE VIC (2010) Victorian Best Practice Guidelines for Assessing and Managing Coastal Acid Sulfate Soils (October 2010) Department of Sustainability and Environment

EnHealth (2012). Environmental Health Risk Assessment: Guidelines for assessing human health risks from environmental hazards, Department of Health and Ageing and EnHealth Council, Commonwealth of Australia (2012).

iEnvi (2022a). Preliminary Site Investigation - Concord High School. iEnvironmental Australia Pty Ltd.

iEnvi (2022b). Detailed Site Investigation - Concord High School. iEnvironmental Australia Pty Ltd.

iEnvi (2022c). Groundwater and Hydrogeological Investigation - Concord High School. iEnvironmental Australia Pty Ltd.

iEnvi (2023a). Upgradient Groundwater Investigation - Concord High School. iEnvironmental Australia Pty Ltd.

iEnvi (2023b). Remediation Action Plan - Concord High School. iEnvironmental Australia Pty Ltd.

National Environmental Protection Council (NEPC) (2013). National Environment Protection(Assessment of Site Contamination) Measure 1999 (as amended April 2013).

NSW Department of Planning, Infrastructure and Environment (2021) Managing Land Contamination: Planning Guidelines: SEPP (Resilience and Hazards) (2021).

NSW EPA (1996). Protection of the Environment Operations (Waste) Regulation (1996).

NSW EPA (2014a). Waste Classification Guidelines (November 2014).

NSW EPA (2014b). The excavated natural material order 2014 ("the ENM Order"). Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014.

NSW EPA (2015). Guidelines on the Duty to Report Contamination under the Contaminated and Management Act 1997 (July 2015).

NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Ed.) (2017).

NSW EPA (2020). Consultants Reporting on Contaminated Land. NSW Office of Environment and Heritage, April (2020).

NSW EPA (2022). Sampling Design Part 1 and 2 - Contaminated Land Guidelines (August 2022). WSP (2020). Concord High School. Asbestos In Grounds Management Plan.

9 Limitations

Limitatio		
Version		
2.1		

The conclusions and information presented in this document are relevant to the conditions of the site and the state of legislation currently enacted as at the date of this report. iEnvironmental Australia Pty Ltd (iEnvi) does not make any representations or warranties of the suitability and applicability of the conclusions in this report in the future, since potential changes in the condition of the site, applicable legislation and/or other future factors may affect the conclusions contained in this document.

iEnvi uses a degree of skill and care ordinarily exercised by reputable members of the industry practicing in the same or similar locality. Conclusions and information are based on representative samples and/or locations at the site, the frequency of those samples being in accordance with the usual levels of testing carried out for this type of investigation. Due to the inherent variability of soils and groundwater and the general environment, iEnvi cannot warrant that the whole overall condition of the site is identical or substantially like the representative samples. In addition, underground services locations, ground penetrating radar, field device readings and scans are inherently subject to variability and none are considered infallible, and only provide additional information with a margin of error that can be used for decision making. Due to this uncertainty, iEnvi cannot warrant and will not be liable for any decisions made relying on use of scanning or field devices.

The Client agrees that iEnvi shall not be liable for any damages or losses arising out of or in connection with this report, including, but not limited to:

- delays or disruptions at the sites;
- damage to the Client's site from iEnvi's collection of samples and data, to the extent that such damage is the type normally incurred when performing services of this nature;
- the actions, or inactions of third parties' using and/or accessing the sites;
- incurred by or threatened against any third-party, whatsoever;
- losses that occur as a result of the Client's delay or providing iEnvi inaccurate, incorrect, incomplete, faulty, false, fraudulent, and/or misleading information and/or not providing the required access to any sites;
- the Client's reliance on the quality, accuracy, or reliability of profiles, ratings, recommendations, and feedback (including their content, order, and display), or metrics found on, used on, or made available through iEnvi's report; and
- any use of the report in a manner or for a purpose that is not the listed purpose/objective
 in this report and/or strictly by the Client, as specified in this report.

The liability of iEnvi, its affiliates, licensors, and third-party service providers to the Client for any claim arising out of or in connection with this report shall not exceed the aggregate of any monies

paid by the Client in consideration of this report. These limitations will apply to any liability, arising from any cause of action whatsoever arising out of or in connection with this report, whether in contract, tort (including negligence), strict liability, or otherwise, even if advised of the possibility of such costs or damages and even if the limited remedies provided herein fail of their essential purpose. Some jurisdictions do not allow for all of the foregoing exclusions and limitations, so to that extent, some or all of these limitations and exclusions may not apply to the Client.

This report has been prepared exclusively for the Client mentioned in this report for the specific purpose to which it refers. No responsibility is accepted to any third party. The Client shall not, under any circumstances whatsoever, allow this report, or any part or reference thereto, to be published in any document, statement, or circular, nor in any communication with third parties without the specific prior written approval of iEnvi, which approval shall specifically authorise the form and context in which the report will appear.

This report and the information contained herein is and shall at all times remain the absolute Intellectual Property of iEnvi. iEnvi hereby grants to the Client a limited exclusive license to use this Report for the objectives/purposes outlined in this report only. The Client hereby acknowledges and agrees not to use this report for any purpose other than the Purpose, since iEnvi's reports insurance only includes insurance for the Client, and no third parties, for the objectives/purposes outlined in this report, unless otherwise agreed to by iEnvi in writing.

The Client shall not use this report for offering any goods or services, and shall not do any of the following without iEnvi's express prior written consent:

- sell, reproduce, distribute, modify, display, publicly perform, prepare derivative works based on, repost, or otherwise use any content of this report in any way for any public or commercial purpose;
- use any content of this report for any purpose except for the objectives/purposes outlined in this report and Client's own viewing;
- attempt to reverse engineer, modify, adapt, translate, prepare derivative works from, and/or decompile any part of the report unless expressly permitted by applicable law; or
- use the report in order to build a similar service or application, or publish any performance, or any benchmark test or analysis relating to the report.

iEnvi and its licensors retain all right, title, and interest in and to all Intellectual Property Rights related in and to this report. The logos and names are trademarks of iEnvi and may be registered in certain jurisdictions. All other product names, company names, marks, logos, and symbols on the report may be the trademarks of their respective owners. Except as expressly stated in this report, nothing in the report confers any license under any of iEnvi's or any third party's Intellectual Property Rights, whether by estoppel, implication, or otherwise.

For the purposes of this report, the term "Intellectual Property Rights" means all patent rights, copyright rights, mask work rights, moral rights, rights of publicity, trademark, trade dress and service mark rights, goodwill, trade secret rights and other intellectual property rights as may now exist or hereafter come into existence, and all applications therefore and registrations, renewals

Acid Sulfate Soil Management Plan for Concord High School 5 Stanley Street, Concord NSW 2137 Reference: 20220303

and extensions thereof, under the laws of any state, country, territory or other jurisdiction, and all other intellectual property as defined in article 2 of the convention establishing the World Intellectual Property Organisation 1967 and Intellectual Property has the corresponding meaning.

In addition to the above limitations, iEnvi's terms and conditions shall also apply to this report and all works undertaken by iEnvi. A copy of iEnvi's current terms and conditions, as amended from time to time, are provided in the following web link: www.ienvi.com.au/terms-and-conditions/.

10 Attachments

FIGURES

- 1. Site Location
- 2. Site Layout
- 3. Overlay of Development Plan and PASSA

APPENDICES

- A. Signed Record
- B. Soil Borelogs
- C. Previous Sampling Results Tables

FIGURES

Figure 1. Site Location

Figure 2. Site Layout
Figure 3. Overlay of Development Plan and PASSA

APPENDICES

Appendix A. Signed Record

Full Name	Company	Role	Signature				
			Signature acknowledging that ASSMP has been reviewed	Signed Date			
	1	<u> </u>	<u> </u>				

Appendix B. Soil Borelogs

iE	Ξn	Vi			MV	/ 0′		Senio	or Driller Name:	Nares Chint i	sh halapud	Development l	Purge (L) nd notes:	20
							W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	20/06	6/2022	Groi Encountere	undwater d (mbgs)	5.1
	Location: 5 Stanley Street, Concord NSW 2137								Pate Finish: 20/06/2022		6/2022		undwater	4.439
	Easting, Northing: -33.8643285, 151.1090737							Screen	Length (m):	-			neter (m):	90 mm / 50 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Cor	nsulting E	ngineers (NSW) Pty Ltd	Surface	e mAHD:			Filter Pack Gr	rain Diam (m):	0.0
	Drill/Exc	cavator Riç	j Detail:		Ute mounted	drill rig		Con	npletion:	stand pipe v	lation -	Well Pipe material:		PVC
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	-		Well D	liagram licable)	PID (ppm)	Odour
							Well stickup 0.9 m. Grass surface. (0 to 0 mbgs)							
2	6.0			он	MW01/0.2	Y	gravelly sandy CLAY: poorly sorted, high plasticity (dark), Dark Brown. Sampling through mounds (fill). FILL. (0 to 3.5 mbgs)	М				Slurry/ Cement	0.2	nil
4		Flight Auger		он	MW01/1.5, MW01/4.5	Υ	CLAY: well sorted, med plasticity (dark), Orange. Becoming drier with depth, becoming lower plasticity with depth, gradual colour change to grey with depth. NATURAL. (3.5 to 6 mbgs)	М	▼			Sand	0.1	nil
7	7 1.0			CL		N	CLAY: well sorted, low plasticity (light), Grey. weathered shale bedrock. NATURAL. (6 to 7.5 mbgs)	SM				Backfill		nil
	gged By:	IW			Checked By		MN							

Logged By: IW Checked By MN
mbgs = metres below ground surface. Moisture Description: D=dry, SM=slightly moist, M=moist, VM=very moist, W=wet/saturated
Disclaimer: This bore log is intended for environmental and not geotechnical purposes.
This Borelog Template is under Copyright of iEnvironmental Australia Pty Ltd 2022.

iF	- -	\/i			MV	/02	2	Senio	or Driller Name:	Nares Chinti	h nalapud	Development I	Purge (L) nd notes:	20
	-11				ft: 20220303 - SINSW Concord NSW, Concord HS PSI and DSI					t: 20/06/2022		Grou Encountere	ındwater d (mbgs)	3
			Locat	ion:	5 Stanley	Street,	Concord NSW 2137	Date Finis			2022		ındwater	2.365
		Eastin	g, Nort	hing:	-33.864444, 1	51.10914	42	Screen	Length (m):	-		Bore Diame		90 mm / 50 mm
	Drilling	g/Excavato	r Comp	any:	Structerre Co	nsulting E	ngineers (NSW) Pty Ltd	Surface	e mAHD:	1		Filter Pack Gr	ain Diam (m):	0.0
		cavator Rig) Detail:		Ute mounted	drill rig		Con	mpletion:	Monitor well install stand pipe version monu	ation - up vith	Well Pipe	material:	PVC
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level		Well D	iagram licable)	PID (ppm)	Odour
							Compacted sand surface. Well stick-up 0.455 m (0 to 0 mbgs)							
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.3	Flight Auger		OL	MW02/0.2	Y	silty CLAY: well sorted, low plasticity (dark), Dark Brown. FILL. (0 to 3.2 mbgs)	м	▼ ▽			Slurry/ Cement Bentonite	0.1	nil
4	3.3			СН	MW02/4.5	Υ	CLAY: well sorted, high plasticity (light), Grey-orange and Pale Brown. NATURAL. (3.2 to 6 mbgs)	м				Sand	0.1	nil

Logged By: IV Checked By MN
mbgs = metres below ground surface. Moisture Description: D=dry, SM=slightly moist, M=moist, VM=very moist, W=wet/saturated
Disclaimer: This bore log is intended for environmental and not geotechnical purposes.
This Borelog Template is under Copyright of iEnvironmental Australia Pty Ltd 2022.

iF	-n	vi			MV	/0:	3	Senio	or Driller Name:	Nares Chinth	h nalapud	Development a	Purge (L) nd notes:	20
							W Concord NSW, Concord HS PSI and DSI	Di	ate Start:	20/06/	2022	Gro Encountere	undwater d (mbgs)	
	Location: 3 Stanley Street, Concord NSW 2137							Dat	te Finish:	20/06/	2022		undwater	1.48
		Eastin	ng, Nort	hing:	-33.8644741,	151.1089	789	Screer	Length (m):	-		Bore Diame		90 mm / 50 mm
	Drilling	g/Excavato	or Com	oany:	Structerre Co	nsulting E	ingineers (NSW) Pty Ltd	Surfac	e mAHD:	7.9		Filter Pack Gr		0.0
	Drill/Exc	avator Riç	g Detail		Ute mounted	drill rig		Cor	npletion:	Monito well installa gattic cover/ box.	ation -	Well Pipe	material:	PVC
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level	v	Vell D	iagram licable)	PID (ppm)	Odour
				GW		N	Asphalt surface. Top of casing 0.07 mbgs. (0 to 0 mbgs) gravelly GRAVEL: well sorted, loose, Asphalt and roadbase. Bitumen/roadbase FILL. (0 to 0.05 mbgs)	М						nil
	6.9			OL	MW03/0.2	Y	sandy gravelly CLAY: poorly sorted, low plasticity (dark), Grey and Dark Brown. FILL. (0.05 to 1.8 mbgs)	M	•				0.1	nil
3 3 4 4 5 5 5 5 5 5	5.9	Flight Auger		он	MW03/4.5	Y	CLAY: well sorted, med plasticity (dark), Reddish Brown. No GW inflow observed. Refusal at 5.1 mbgs NATURAL. (1.8 to 5.1 mbgs)	М				Bentonite Sand	0.1	nil
	——————————————————————————————————————	IM/												

Logged By: IW Checked By MN
mbgs = metres below ground surface. Moisture Description: D=dry, SM=slightly moist, M=moist, VM=very moist, W=wet/saturated
Disclaimer: This bore log is intended for environmental and not geotechnical purposes.
This Borelog Template is under Copyright of iEnvironmental Australia Pty Ltd 2022.

iE	En	vi			ВН	01		Senio	or Driller Name:	Naresh Chintha i	lapud	Development I	Purge (L) nd notes:	-
		Pro	oject l	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ite Start:	21/06/2	022	Grou Encountere	undwater d (mbgs) ∇:	-
			Locat	ion:	5 Stanley	Street,	Concord NSW 2137	Date	e Finish:	21/06/2	022	Grou Stabilised (I	undwater mbgs) ▼:	-
		Eastin	g, Nort	hing:	-33.863928, 1	51.10850	19	Screen	Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilling	g/Excavato	r Comp	any:	Structerre Co	nsulting E	ingineers (NSW) Pty Ltd	Surface	mAHD:	11.5		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfill		Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			agram icable)	PID (ppm)	Odour
							Grass surface. (0 to 0 mbgs)							
F		Hand Auger		OL	BH01/0.2, QS01, QS01A	Y	gravelly silty CLAY: poorly sorted, low plasticity (dark), Dark Brown. FILL. (0 to 0.3 mbgs)	М				Backfill	0	nil
-														

iE	En	vi			ВН	02		Senio	or Driller Name:	Naresh Chintha i	alapud	Development l	Purge (L) nd notes:	-
		Pro	oject I	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06/2	2022	Groi Encountere	undwater d (mbgs) ∇:	-
			Locati	ion:	5 Stanley	Street,	Concord NSW 2137	Dat	e Finish:	21/06/2	2022	Grou Stabilised (undwater mbgs) ▼:	-
		Eastin	ıg, Norti	hing:	-33.8635049,	151.1078	139	Screen	Length (m):	-		Bore Diame		90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Co	nsulting E	ingineers (NSW) Pty Ltd	Surfac	e mAHD:	14.4		Filter Pack Gr		-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfill		Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
	E	Hand Auger		OL	BH02/0.2	Υ	Grass surface. (0 to 0 mbgs) gravelly silty CLAY: poorly sorted, low plasticity (dark), Dark Brown. FILL. (0 to 0.3 mbgs)	М		Н		Backfill	0	nil
- - - - -	ged By:	IW			Checked By		MN							

iE	En	vi			BH	03		Senio	or Driller Name:	Nares Chinth	h nalapud	Development I	Purge (L) nd notes:	-
		Pro	oject I	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06/	2022	Grou Encountere	undwater d (mbgs) ∇:	-
			Locati	ion:	5 Stanley	Street,	Concord NSW 2137	Date	e Finish:	21/06/	2022	Grou Stabilised (I	undwater mbgs) ▼:	-
		Eastin	ıg, Norti	hing:	-33.8634954,	151.1078	717	Screen	Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Co	nsulting E	ingineers (NSW) Pty Ltd	Surface	e mAHD:	14.2		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfi	II	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
							Grass surface. (0 to 0 mbgs)							
F		Hand Auger		OL	вн03/0.2	Υ	gravelly silty CLAY: poorly sorted, low plasticity (dark), Dark Brown. FILL. (0 to 0.3 mbgs)	М				Backfill	0.1	nil
	ged By:	IW			Checked By		MN							

iE	En	vi			ВН	04		Senio	or Driller Name:	Naresh Chintha	ı alapud	Development I	Purge (L) nd notes:	-
		Pro	oject F	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06/2	2022	Grou Encountere	undwater d (mbgs) ∇:	-
			Locati	on:	5 Stanley	Street,	Concord NSW 2137	Dat	e Finish:	21/06/2	2022	Grou Stabilised (I	undwater mbgs) ▼:	-
		Eastin	ıg, Norti	ning:	-33.8637828,	151.1087	546	Screen	Length (m):	-		Bore Diame		90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Co	nsulting E	ingineers (NSW) Pty Ltd	Surfac	e mAHD:	10.4		Filter Pack Gr		-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfil	ı	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
_	E	Hand Auger		CL	BH04/0.2, QS02	Υ	Grass surface. (0 to 0 mbgs) gravelly CLAY: well sorted, low plasticity (light), Brown or Pale Brown. FILL. (0 to 0.3 mbgs)	SM				Backfill	0	nil
- - - - -	ged By:	IW			Checked By		MN							

iE	En	vi			ВН	05		Senio	or Driller Name:	Naresh Chintha i	alapud	Development I	Purge (L) nd notes:	-
		Pro	oject I	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06/2	2022	Grou Encountere	undwater d (mbgs) ∇:	-
			Locati	ion:	5 Stanley	Street,	Concord NSW 2137	Date	e Finish:	21/06/2	2022	Grou Stabilised (I	undwater mbgs) ▼:	-
		Eastin	ıg, Norti	hing:	33.8644148, 1	151.10935	507	Screen	Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Cor	nsulting E	ngineers (NSW) Pty Ltd	Surface	e mAHD:	6.6		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfill		Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
	F	Hand Auger		он	вно5/0.2	Υ	Grass surface. (0 to 0 mbgs) gravelly CLAY: well sorted, med plasticity (dark), Dark Brown/Grey. FILL. (0 to 0.3 mbgs)	М				Backfill	0.2	nil
	ged By:	IW			Checked By		MN							

iE	En	vi			BH	06		Senio	or Driller Name:	Naresi Chinth	n alapud	Development I	Purge (L) nd notes:	-
		Pro	oject I	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06/	2022	Grou Encountere	undwater d (mbgs) ∇:	-
			Locati	ion:	5 Stanley	Street,	Concord NSW 2137	Date	e Finish:	21/06/	2022	Grou Stabilised (undwater mbgs) ▼:	-
		Eastin	ıg, Norti	hing:	33.8640844,	151.1083	907	Screen	Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Co	nsulting E	ngineers (NSW) Pty Ltd	Surface	e mAHD:	10.4		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfi	I	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
							Grass surface. (0 to 0 mbgs)							
F	E	Hand Auger		OL	вн06/0.2	Y	gravelly silty CLAY: poorly sorted, low plasticity (dark), Dark Brown. FILL. (0 to 0.3 mbgs)	М				Backfill	0.1	nil
	ged By:	IW			Checked By		MN							

iE	En	vi			ВН	07		Senio	or Driller Name:	Naresh Chintha	alapud	Development I	Purge (L) nd notes:	-
							W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06/2	2022	Grou Encountere	undwater d (mbgs) V:	-
			Locati	on:	5 Stanley	Street,	Concord NSW 2137	Date	e Finish:	21/06/2	2022	Grou Stabilised (I	undwater mbgs) ▼:	-
		Eastin	ıg, Norti	ning:	33.8640844,	151.10839	907	Screen	Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Co	nsulting E	ingineers (NSW) Pty Ltd	Surface	e mAHD:	10.4		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfil		Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
							Grass surface. (0 to 0 mbgs)							
-		Hand Auger		OL	ВН07/0.2	Y	gravelly silty CLAY: poorly sorted, low plasticity (dark), Dark Brown. FILL. (0 to 0.3 mbgs)	М				Backfill	0	nil

iE	En	vi			BH	08		Senio	or Driller Name:	Nares Chinth	h nalapud	Development I	Purge (L) nd notes:	-
		Pro	oject F	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06	2022	Grou Encountere	undwater d (mbgs) ∇:	-
			Locati	ion:	5 Stanley	Street,	Concord NSW 2137	Dat	e Finish:	21/06	2022	Grou Stabilised (I	undwater mbgs) ▼:	-
		Eastin	ıg, Norti	hing:	33.864444, 15	51.10914	12	Screen	Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Co	nsulting E	ngineers (NSW) Pty Ltd	Surface	e mAHD:	7.3		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfi	ill	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
							Grass surface. (0 to 0 mbgs)							
F		Hand Auger		CL	вн08/0.2	Υ	gravelly CLAY: well sorted, low plasticity (light), Brown or Pale Brown. FILL. (0 to 0.3 mbgs)	SM				Backfill	0	nil
	ged By:	IW			Checked By		MN							

iE	En	vi			ВН	09		Senio	or Driller Name:	Nares Chinti	sh nalapud	Development a	Purge (L) nd notes:	-
		Pro	oject I	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06	/2022	Gro Encountere	undwater d (mbgs) ∇:	-
			Locati	ion:	5 Stanley	Street,	Concord NSW 2137	Date	e Finish:	21/06	/2022	Gro Stabilised (undwater mbgs) ▼:	-
		Eastin	ng, Norti	hing:	33.8644448,	151.10914	147	Screen	Length (m):	-		Bore Diame Diar	ter / Well neter (m):	90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Co	nsulting E	ngineers (NSW) Pty Ltd	Surface	e mAHD:	7.3		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Rig	g Detail:		Ute mounted	drill rig		Con	npletion:	Backf	ill	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			liagram licable)	PID (ppm)	Odour
		Hand Auger		ОН	вно9/0.2	Y	In planter bed. Sampled 0.2 m below geotextile fabric @ 0.3 m. (0 to 0 mbgs) sandy CLAY: well sorted, med plasticity (dark), Dark brown and Grey. Geotextile fabric at 0.3 mbgs. FILL. (0 to 0.5 mbgs)	М				Backfill	0	nil
	ged By:	IW			Checked By		MN							

iE	En	vi			ВН	10		Senio	or Driller Name:	Nares Chinth	h nalapud	Development I	Purge (L) nd notes:	-
		Pro	oject I	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06	2022	Grou Encountere	indwater d (mbgs) ∇:	-
			Locati	ion:	5 Stanley	Street,	Concord NSW 2137	Date	e Finish:	21/06	2022	Grou Stabilised (ındwater mbgs) ▼:	-
		Eastin	g, Norti	hing:	33.864444, 15	51.10914	12	Screen	Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilling	g/Excavato	r Comp	oany:	Structerre Co	nsulting E	ngineers (NSW) Pty Ltd	Surface	e mAHD:	7.3		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfi	ill	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
			1/3////3//				Grass surface. (0 to 0 mbgs)							
F		Flight Auger		он	BH10/0.2	Y	gravelly CLAY: well sorted, med plasticity (dark), Dark Brown. FILL. (0 to 0.3 mbgs)	М				Backfill	0.1	nil
	ged By:	IW			Checked By		MN							

	Er				BH 20220303		W Concord NSW, Concord HS PSI and DSI		or Driller Name:	i	nalapud	Grou Encountere	undwater d (mbgs)	-
			Loca	tion:	5 Stanley	Street,	Concord NSW 2137	Dat	e Finish:	21/06/	/2022	Grou Stabilised (undwater mbgs) ▼:	-
		Eas	ting, Nor	thing:	33.864444, 15	51.109144	12	Screen	Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilli	ng/Excav	ator Com	pany:	Structerre Co	nsulting E	ngineers (NSW) Pty Ltd	Surfac	e mAHD:	7.3		Filter Pack Gr	ain Diam (m):	-
	Drill/E	xcavator	Rig Detai	l:	Ute mounted	drill rig		Con	npletion:	Backfi	ill	Well Pipe	material:	-
Don'th (mbge)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			Diagram Dicable)	PID (ppm)	Odour
	•						Grass surface. (0 to 0 mbgs)							
				OL	BH11/0.2	Υ	gravelly CLAY: well sorted, low plasticity (dark), Dark Brown. FILL. (0 to 1 mbgs)	м					0.1	nil
	1 6.	3		sw			SAND: well sorted, very loose, Yellow. Fine to medium grain FILL. (1 to 1.1 mbgs)	М	1				0	nil
E	E	Flight		OL			gravelly CLAY: well sorted, low plasticity (dark), Dark Brown. FILL. (1.1 to 1.5 mbgs)	М				Backfill	0.1	nil
	2 5.	Auge		SM	BH11/2.5	Y	silty gravelly SAND: poorly sorted, loose, Black. FILL. (1.5 to 3 mbgs)					Backilli	0.1	nil
4	ogged By:	IW		<u> </u>	Checked By		MN	I	I			1		

Logged By: IW Checked By MN
mbgs = metres below ground surface. Moisture Description: DNO
plicalimer: This bore log is intended for environmental and not geotechnical purposes.
This Borelog Template is under Copyright of iEnvironmental Australia Pty Ltd 2022.

i	Ξn	Vi			BH	12		Senio	or Driller Name:	Nares Chint i	sh halapud		nd notes:	-
							W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06	/2022	Groi Encountere	undwater d (mbgs) ∇:	-
			Locati	on:	5 Stanley	Street,	Concord NSW 2137	Dat	te Finish:	21/06	/2022	Grou Stabilised (undwater mbgs) ▼:	-
		Eastir	ng, North	ing:	33.864444, 15	1.109144	12	Screer	n Length (m):	-		Bore Diame Dian	ter / Well neter (m):	90 mm
	Drilling	g/Excavate	or Comp	any:	Structerre Cor	nsulting E	ngineers (NSW) Pty Ltd	Surfac	e mAHD:	7.3		Filter Pack Gr	ain Diam (m):	-
	Drill/Exc	cavator Ri	g Detail:		Ute mounted	drill rig		Cor	mpletion:	Backf	fill	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	USCS	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
							Compacted sand. (0 to 0 mbgs)							
	1 6.3			он	вн12/0.2	Υ	gravelly CLAY: well sorted, med plasticity (dark), Dark Brown. FILL. (0 to 1.8 mbgs)	М				Backfill	0.2	nil
	5.3			СН	BH12/2.5	Y	sandy CLAY: well sorted, high plasticity (light), Yellow. FILL. (1.8 to 3 mbgs)	VM					0.1	nil
Loc	gged By:	IW			Checked By		MN							

iE	Ξn	Vi			BH	13		Senio	or Driller Name:	Nares Chint i	h nalapud		ind notes:	-
		Pro	oject F	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06	/2022	Grou Encountere	undwater ed (mbgs) ▽:	-
			Locati	on:	5 Stanley	Street,	Concord NSW 2137	Dat	te Finish:	21/06	/2022	Grou Stabilised (undwater mbgs) ▼:	-
		Eastin	ng, North	ning:	33.864444, 15	1.109144	12	Screer	n Length (m):	-		Bore Diame Dian	eter / Well neter (m):	90 mm
	Drilling	g/Excavato	or Comp	any:	Structerre Cor	nsulting E	ngineers (NSW) Pty Ltd	Surfac	e mAHD:	7.3		Filter Pack Gr	rain Diam (m):	-
	Drill/Exc	cavator Rig	g Detail:		Ute mounted	drill rig		Cor	mpletion:	Backf	ill	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
							Grass cover. (0 to 0 mbgs)							
1	1 6.3			он	вн13/0.2	Υ	gravelly CLAY: well sorted, med plasticity (dark), Dark Brown. FILL. (0 to 1.8 mbgs)	М				Backfill	0.2	nil
2	5.3			CL	вн13/2.5	γ	sandy CLAY: well sorted, low plasticity (light), White with Pale Brown Streaks. NATURAL. (1.8 to 3 mbgs)	VM					0.3	nil
	gged By:	IW		_	Checked By		MN	<u> </u>						

iE	Project Ref: 20220303 - SIN Location: 5 Stanley Street Easting, Northing: 33.864444, 151.109					14		Senior	or Driller Name:	Naresh Chintha i	ı alapud	Development I	Purge (L) and notes:	-
		Project Ref: 20220303 - S Location: 5 Stanley Stre Easting, Northing: 33.864444, 151.10 Prilling/Excavator Company: Structerre Consult III/Excavator Rig Detail: Ute mounted drill in the second of the second o					W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06/2	2022	Encountere	▼:	-
		Project Ref: 20220303 - S Location: 5 Stanley Street Easting, Northing: 33.864444, 151.10 Orilling/Excavator Company: Structerre Consult III/Excavator Rig Detail: Ute mounted drill reference of the consult of the				Street,	Concord NSW 2137	Date	e Finish:	21/06/2	2022	Grou Stabilised (I	undwater mbgs) ▼:	-
		Project Ref: 20220303 - S Location: 5 Stanley Stre Easting, Northing: 33.864444, 151.10 ng/Excavator Company: Structerre Consult ccavator Rig Detail: Ute mounted drill of the company				51.10914	42	Screen	Length (m):	-		Bore Diame Dian	eter / Well meter (m):	90 mm
	Drilling	g/Excavato	Location: 5 Stanley Str Location: 5 Str Location: 5 Stanley Str Loca			nsulting E	ngineers (NSW) Pty Ltd	Surface	e mAHD:	7.3		Filter Pack Gr	rain Diam (m):	-
	Drill/Exc	cavator Rig	Detail:	pject Ref: 20220303 - cocation: 5 Stanley S g, Northing: 33.864444, 151 r Company: Structerre Cons Detail: Ute mounted dr BD J J G G G G G G G G G G G G G G G G G				Com	npletion:	Backfill		Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Location: 5 Stanley Starting, Northing: 33.864444, 151. avator Company: Structerre Consist Rig Detail: Ute mounted driver and the starting of				Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
							Compacted sand. (0 to 0 mbgs)							
\Box				ОН	BH14/0.2	Υ	sandy CLAY: well sorted, med plasticity (dark), Brown. FILL. (0 to 0.1 mbgs)	M					0.1	nil
, ,				•					1 .	1 1	1 1			1 1
				ОН	BH14/1.0	Y	gravelly sandy CLAY: poorly sorted, med plasticity (dark), Dark Brown and Dark Grey. refusal at 1.0 mbgs. FILL. (0.1 to 1 mbgs)	м				Backfill	0.1	nil

iE	En	Vİ			BH	15		Senio	or Driller Name:	Nares Chintr i	h nalapud		nu notes.	-
		Pro	oject I	Ref:	20220303	- SINS	W Concord NSW, Concord HS PSI and DSI	Da	ate Start:	21/06	2022	Encountere	▼:	-
			Locat	ion:	5 Stanley	Street,	Concord NSW 2137		e Finish:	21/06	2022	Stabilised (-
		Eastir	ng, Nort	hing:	33.864444, 1	51.10914	42	Screen	Length (m):	-			neter (m):	90 mm
	Drillin	g/Excavato	or Comp	any:	Structerre Co	nsulting E	Engineers (NSW) Pty Ltd	Surfac	e mAHD:	7.3		Filter Pack Gr	ain Diam (m):	-
	Drill/Ex	cavator Rig	Detail:		Ute mounted	drill rig		Con	npletion:	Backfi	ill	Well Pipe	material:	-
Depth (mbgs)	Elevation (mAHD)	Drilling Method	Graphic Log	nscs	Samples	Analysed	Material Description	Moisture	Water Level			iagram licable)	PID (ppm)	Odour
	•						Grass cover. (0 to 0 mbgs)				T	,		
E				OL	BH15/0.2	Y	gravelly foreign materially CLAY: well sorted, low plasticity (dark), Dark Brown. Substantial quantities of brick and concrete fragments. FILL. (0 to 0.2 mbgs)	М					0.2	nil
1	6.3			OL	BH15/2.0	Y	gravelly CLAY: well sorted, low plasticity (dark), Dark Brown. refusal at 2.0 mbgs. FILL. (0.2 to 2 mbgs)	М				Backfill	0.2	nil

Appendix C. Previous Sampling Results Tables

1. Soil PFAS, CH, PCBs, Hal Benz

																													Herb icide								
								PFOS/				c	hlorin	ated H	ydroc		ıs				Н	alogen	ated B	enzen	es				s				PC	.Bs			
						Perfluorohexane	Perfluorooctanesulfonic acid (PFOS)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	Sum of PFHxS and PFOS		6:2 Fluorotelomer sulfonic acid (6:2 FTS)	Benzal Chloride	Benzotrichloride	Benzyl chloride	Hexachlorobutadiene	Hexachlorocyclopentad ene	Hexachloroethane	1,2,3,4- tetrachlorobenzene	1,2,3,5- Tetrachlorobenzene	1,2,3-trichlorobenzene	1,2,4,5- tetrachlorobenzene	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,3,5-Trichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Hexachlorobenzene	Pentachlorobenzene		Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)
	I					μg/kg	mg/kg	μg/kg	μg/kg	μg/kg r	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			mg/kg		mg/kg		mg/kg	mg/kg		mg/kg	mg/kg			mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg
EQL	 able 1B(7) Manag	omont Limit	s in Pos/Dark	dand Ei	no Soil	5	0.005	5	5	5 (0.01	0.05	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	20	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	able 1B(7) Manag			dallu, FI	ile Juli																																
PFAS NEMP 2	020 Ecological dir	ect exposure	e				1																														
	020 Public open s			1 (1 111 - 4)					1,000																												
	020 Residential w able 1B(6) ESLs fo			II (HIL A)					7																												
	able 1A(1) HILs Re		, rille soil																								10										1
	able 1A(1) HILs Re																										10										1
		Field ID	Date		Matrix Type																			i													
901484	S22-Jn0063769		21/06/22	0.2	Soil		<0.005		<5									1		1		<0.5							<20	<0.1			<0.1				
901484	S22-Jn0063770		21/06/22	0.2	Soil		<0.005		<5	-			<0.05										<0.5				<0.5		<20	<1	<1	<1	<1	<1	<1	<1	<1
901484 901484	S22-Jn0063771 S22-Jn0063772		21/06/22	0.2	Soil	<5 <5	< 0.005		<5 <5				<0.05		<0.5	<0.5		<0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20 <20	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063772		21/06/22	0.2	Soil	<5	<0.005		<5				<0.05		<0.5	<0.5		<0.5					<0.5	<0.5	<0.5		<0.5	<0.5	<20	<0.1	<0.1				<0.1	<0.1	
901484	S22-Jn0063774		21/06/22	0.2	Soil	<5	<0.005		<5				<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063775		21/06/22	0.2	Soil	<5	< 0.005		<5				<0.05	<0.5	<0.5	<0.5		<0.5	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063776	BH08/0.2	21/06/22	0.2	Soil	<5	<0.005		<5	<5 <	0.01	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063777	BH09/0.2	21/06/22	0.2	Soil	<5	<0.005	<5	<5	<5 <	0.01	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063778	BH10/0.2	20/06/22	0.2	Soil	<5	<0.005	<5	<5	<5 <	0.01	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063779	BH11/0.2	20/06/22	0.2	Soil	<5	<0.005	<5	<5	<5 <	0.01	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063780			2.5	Soil								<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20		\vdash	\vdash	\vdash	\vdash	\square	_	_
901484	S22-Jn0063781			0.2	Soil	<5	<0.005	<5	<5	<5 <			<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484 901484	S22-Jn0063782 S22-Jn0063783			0.2	Soil		<0.005			<5 <			<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	10.1	-0.1	10.1	-0.1	10.1	10.1	-0.1
901484	S22-Jn0063784			2.5	Soil	< 5	KU.003	<5	<5	<5 <			<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20 <20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063785		20/06/22	0.2	Soil	<5	<0.005	<5	<5	<5 <			<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063786		20/06/22	1	Soil								<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20								
901484	S22-Jn0063793	BH15/0.2	20/06/22	0.2	Soil	<5	<0.005	<5	<5	<5 <	0.01	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063794	BH15/2.0	20/06/22	2	Soil	<5	<0.005	<5	<5	<5 <	0.01	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063789			0.2	Soil	<5	<0.005	<5	<5	<5 <	0.01	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
901484	S22-Jn0063790			4.5	Soil	<5	<0.005		<5				<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1			<0.1	<0.1	<0.1	
901484	S22-Jn0063791			0.2	Soil	<5	<0.005		<5				<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<0.1	<0.1			<0.1	<0.1	<0.1	
901484 901484	S22-Jn0063792 S22-Jn0063787			0.2	Soil	<5 <5	< 0.005		<5 <5				<0.05	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20 <20	<0.1	<0.1			<0.1	<0.1	<0.1	
901484	S22-Jn0063788	•			Soil	1.5	10.005	- 13		,,,			<0.05				<0.5				<0.5			<0.5			<0.5		<20	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1
Statistics																																					
Number of Re						21			21			26	26	26	26	26		26		26	26		26	26	26	26	26	26	26	21	21				21	21	21
Number of D						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Co							<0.00!		<5 ND		_		<0.05 ND		<0.5 ND	_	_	_		_	_	<0.5			<0.5 ND				<20 ND				<0.1		<0.1 ND		<0.1
Minimum De Maximum Co						ND <5	ND <0.00!	ND <5	ND <5							ND <0.5	_	ND		ND		ND <0.5	ND <0.5		_		ND	ND	ND <20	ND <1	ND <1	ND <1		ND <1	ND <1	ND <1	
Maximum De						ND		ND	ND	ND ND	_					ND					ND		ND		ND			ND	ND	ND					ND		ND
Average Cond							0.002			2.5 0	_																				_						_
Median Conc						_	0.002				_						_	_	_	_	_										_						
Standard Dev	riation *					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
95% UCL (Stu	dent's-t) *					2.5	0.002	2.5	2.5	2.5	.005	0.025	0.025	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	10	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144
% of Detects	-					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% of Non-Det	ects		applied.			100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

^{*} A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res/Parkland, Fine Soil

NEPM, 2013, NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Public open space (HIL C)

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

2013, NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil 2013, NEPM 2013 Table 1A(1) HILs Rec C Soil

1

2. Soil Inorganics, Metals

% Clay* c2mm Fraction 2mm Fraction 2mm Fraction Conductivity (1:5 aqueous extract) Nitrite + Nitrate as N Ammonia as N CEC Chloride Cyanide Total Moisture Content (dried @ 103°C) PH (Lab) PH (Lab) TOC Chromium (hexavalent) Chromium (hexavalent) Chromium (III+VI) Copper	ron Mercury	Nickel Zinc
	ng/kg mg/kg	mg/kg mg/kg
EQL 1 1 10 5 5 0.05 10 1 10 0.1 5 2 0.4 1 5 5	20 0.1	5 5
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space (top 2 m only) 1100^ 100^ 450 220^		300^ 780
NEPM 2013 Table 1A(1) HILs Res A Soil 300 100 20 100 6,000	40	400 7,40
NEPM 2013 Table 1A(1) HILs Rec C Soil 600 300 90 300 17,000	80	1,200 30,00
		, , , , , , , , , , , , , , , , , , , ,
Lab Report N Sample Code Field ID Date Depth Matrix Type		
901484 \$22-Jn0063769 \$BH01/0.2 \$21/06/22 \$0.2 \$Soil \$18 \$31 <5 <5 \$14 <10 <1 \$3,300 \$24 \$3,300 \$5.9 \$5.2 \$310 \$42 \$0.8 <1 \$29 \$96 \$6	,000 0.3	45 600
901484 S22-Jn0063770 BH02/0.2 21/06/22 0.2 Soil 4.1 23 14 <5 27 <10 <1 5,200 32 5,214 6.2 10 230 7.6 <0.4 <1 18 44 2	,000 1.5	8 240
901484 S22-Jn0063771 BH03/0.2 21/06/22 0.2 Soil 17 21 <5 <5 <2 <10 <1 4,400 26 4,400 5.6 6.5 57 7 <0.4 <1 20 17 3	7,000 <0.1	6.2 56
	.,000 <0.1	6.6 66
	0,000 <0.1	270 100
	0,000 <0.1	54 95
	Asb <0.1	<5 13
	0,000 <0.1	7.5 130
	2,000 <0.1 3,000 <0.1	<5 17 8.4 91
	7,000 <0.1	6.8 70
901484 S22-Jn0063780 BH11/2.5 20/06/22 2.5 Soil Soil	<0.1	53 190
	5,000 <0.1	7.6 54
901484 S22-Jn0063782 BH12/2.5 20/06/22 2.5 Soil	<0.1	<5 110
	3,000 <0.1	5.1 62
901484	<0.1	<5 100
901484	,000 <0.1	17 36
901484 S22-Jn0063786 BH14/1.0 20/06/22 1 Soil < 1 8.5 79 5.6 < 0.4 < 1 50 27	0.6	26 88
901484 S22-Jn0063793 BH15/0.2 20/06/22 0.2 Soil 26 9.7 5.6 26 5.4 <5 15 <10 <1 330 18 335.4 7.1 4.7 49 24 <0.4 <1 40 19 5	3,000 <0.1	9.3 77
901484 S22-Jn0063794 BH15/2.0 20/06/22 2 Soil 10 <5 17 <1 710 16 720 100 15 <0.4 <1 31 18	<0.1	12 130
901484 S22-Jn0063789 MW01/0.2 20/06/22 0.2 Soil <1 67 14 <5 23 <10 <1 2,000 19 2,014 6.7 6.5 52 18 <0.4 <1 24 17 4	,000 <0.1	7.9 78
901484 S22-Jn0063790 MW01/4.5 20/06/22 4.5 Soil <5 <5 35 <1 170 19 170 24 19 <0.4 <1 39 7.8	<0.1	<5 13
	3,000 <0.1	7.9 42
901484 S22-Jn0063792 MW02/4.5 20/06/22 4.5 Soil <5 <5 420 <1 74 18 74 66 11 <0.4 <1 72 320	<0.1	5.5 210
	5,000 <0.1	17 56
901484 S22-Jn0063788 MW03/4.5 20/06/22 4.5 Soil	<0.1	<5 15
Statistics		
Number of Results 18 5 5 18 21 21 18 21 26 21 18 18 26 26 26 26 26 26 26	18 26	26 26
Number of Detects 16 5 5 18 8 0 18 6 0 21 26 21 18 18 25 24 2 0 25 25	18 3	20 26
	,000 <0.1	<5 13
	,000 0.3	5.1 13
	0,000 1.5	270 600
Maximum Detect 31 18 5.6 140 19 ND 30 420 ND 5,200 39 5,214 9.3 10 310 140 0.8 ND 120 320 1	0,000 1.5	270 600
Average Concentration * 13 13 3.8 55 6 2.5 22 29 0.5 1,614 18 1,618 7 3.9 76 18 0.24 0.5 32 37 4	9,333 0.14	23 105
Median Concentration * 12.4 13 5 52.5 2.5 2.5 5 0.5 780 18 780 7 3.9 52 11 0.2 0.5 25 20 3	7,000 0.05	7.75 77.5
	2,906 0.3	53 116
	6,926 0.238	
	100 12	77 100
% of Non-Detects	0 88	23 0

^{*} A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res/Parkland, Fine Soil NEPM, 2013, NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Public open space (HIL C) HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A) 2013, NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Clay 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay 2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

[^] calculated based on average soil characteristics and the NEPM Toolbox calculation spreadsheet, Aged Urban Residential and Open Public Spaces

3. Soil SPOCAS

															SPO	·CAC														
	22	8										Ε			320	e e							_					īţ		
	in g	sing ent S		Sulfur	ciu m		acted	acted	a, 5-	ctor	흥	alcin		nlfur nlfur		eroxic	<u>≩</u>	\	a ple			actec	actec	<u>e</u> .	e >	<u>e</u> _	o o	Acid	g	
	Acid Neutralisir pacity - Acidity	tralis Lival	8	ble S	Za Za		I Re	sium	oxide	S Fa	er ox	98	9 E	ole S		i.	acid	Sulfi	idisa -			g E	d Re	lfidic - Titratabli Actual Acidity	atak	atab	oxid	tral	y v	Ē
	Veut	Neut / equ	Cacc	acta	cte	sium	Acic	Acic	Per ble 9	enes	Ë	actal	esiun	actal	tate	<u> </u>	dity (a	cidity (s	le Oxic Sulfur			- Acid	- Aci	F E	- Titrat de Aci	- Titrat lic Acid	Per	e Ac	ble Pe	le Su
	Cid	Acid N	as	Cl Extr	R R	d Rea	≟	≚َخِ	lity -	Ë	Ë	Ext	Cl Extracta Magnesiu	Extra	ing i	gnes	Acic	Acic	oxid s,	(KCI)	н (ох)	i je	- idi	idic	idic	ig ig	j.	atab	atab	atab
	్రి	Cap Cap	Ž Ž	I	Acic	A Či	acio	acio	o aci	¥	Car	<u>5</u>	×	Σ	Ë	Σ Σ	Net	Net L	Per	표	됩	l ling	Sulf.	ns.	Alus Pe Be	all s	Suff	<u>‡</u>	ļ.	量
EQL	mole H+,	/t %S 0.02	% CaCO3 0.02	FACTOR 1	0.005	% MG	mole H+/t 0.005	mole H+/t 0.005	mole H+/t	-	0.005	0.005	0.005	0.005	kg CaCO3/t	0.005	mole H+/t	% S 0.02	0.02	0.1	0.1	% S	% S 0.005	% S 0.003	% S 0.02	% S 0.02	0.005	mole H+/t	MOL H+/T	MOL H+/T
NEPM 2013 Table 1B(7) Management Limits in Res/Parkland, Fine Soil	10	0.02	0.02	1	0.005		0.005	0.005	10		0.005	0.005	0.005	0.005	1	0.005	10	0.02	0.02	0.1	0.1		0.005	0.003	0.02	0.02	0.005	2		
NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil																														
PFAS NEMP 2020 Ecological direct exposure																														
PFAS NEMP 2020 Public open space (HIL C)																														
PFAS NEMP 2020 Residential with garden/accessible soil (HIL A) NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Clay																														
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay																														
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space																														
NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil																														
NEPM 2013 Table 1A(1) HILs Res A Soil																														
NEPM 2013 Table 1A(1) HILs Rec C Soil																														
Inh Danie County Code - Field D - D - V - Code -																														
Lab Repo Sample Code Field ID Date Depth Matrix T	уре																													
901484 S22-Jn0063769 BH02/0.2 21/06/22 0.2 Soil																														
901484 S22-Jn0063771 BH03/0.2 21/06/22 0.2 Soil																														
901484 S22-Jn0063772 BH04/0.2 21/06/22 0.2 Soil																														
901484 S22-Jn0063773 BH05/0.2 21/06/22 0.2 Soil																														
901484 S22-Jn0063774 BH06/0.2 21/06/22 0.2 Soil																														
901484 S22-Jn0063775 BH07/0.2 21/06/22 0.2 Soil																														
901484 S22-Jn0063776 BH08/ 0.2 21/06/22 0.2 Soil																														
901484 S22-Jn0063777 BH09/0.2 21/06/22 0.2 Soil 901484 S22-Jn0063778 BH10/0.2 20/06/22 0.2 Soil																														
901484 S22-Jn0063779 BH11/0.2 20/06/22 0.2 Soil																														
901484 S22-Jn0063780 BH11/2.5 20/06/22 2.5 Soil																														
901484 S22-Jn0063781 BH12/0.2 20/06/22 0.2 Soil	230	0.37	1.1	2	0.22	0.018	110	14	<10	1.5	0.63	0.41	0.023	0.006	<1	0.041	<10	<0.02	<0.02	8.3	8.1	0.17	0.023	<0.003	<0.02	<0.02	0.016	<2	<2	<2
901484 S22-Jn0063782 BH12/2.5 20/06/22 2.5 Soil																														
901484 S22-Jn0063783 BH13/0.2 20/06/22 0.2 Soil	170	0.28	0.87	2	0.16	0.016	79	13	<10	1.5	0.47	0.31	0.009	0.014	<1	0.024	<10	<0.02	<0.02	8.7	7.9	0.13	0.021	<0.003	<0.02	<0.02	0.024	<2	<2	<2
901484 S22-Jn0063784 BH13/2.5 20/06/22 2.5 Soil	420	0.50	2.4	2	0.55	0.027	220		-10		0.05	0.0	0.000	0.040		0.005	-40	.0.02	0.00	0.0	0.5	0.50	0.005	0.000	.0.02	0.00	0.004			
901484 S22-Jn0063785 BH14/0.2 20/06/22 0.2 Soil 901484 S22-Jn0063786 BH14/1.0 20/06/22 1 Soil	430	0.69	2.1	2	0.66	0.027	330	22	<10	1.5	0.96	0.3	0.009	0.013	<1	0.036	<10	<0.02	<0.02	9.3	8.5	0.53	0.035	<0.003	<0.02	<0.02	0.024	<2	<2	<2
901484 S22-Jn0063787 MW03/0.2 20/06/22 0.2 Soil																														
901484 S22-Jn0063788 MW03/4.5 20/06/22 4.5 Soil																														
901484 S22-Jn0063789 MW01/0.2 20/06/22 0.2 Soil																														
901484 S22-Jn0063790 MW01/4.5 20/06/22 4.5 Soil																														
901484 S22-Jn0063791 MW02/0.2 20/06/22 0.2 Soil	200	0.33	1	2	0.2	0.022	99	18	11	1.5	0.55	0.36	0.018	0.015	<1	0.04	<10	<0.02	<0.02	8.7	7.7	0.16	0.029	<0.003	<0.02	<0.02	0.032	<2	<2	<2
901484 S22-Jn0063792 MW02/4.5 20/06/22 4.5 Soil				2	40.00F	0.005	<0.00F	4.4	10	1.5	0.22	0.36	0.036	0.005		0.034	-10	40.03	z0.00	6.5	F.C	40 00F	0.007	40.003	40.03	40.03	0.022			
901484 S22-Jn0063793 BH15/0.2 20/06/22 0.2 Soil 901484 S22-Jn0063794 BH15/2.0 20/06/22 2 Soil				2	<0.005	0.005	<0.005	4.4	10	1.5	0.33	0.36	0.026	0.005	<1	0.031	<10	<0.02	<0.02	6.5	5.6	<0.005	0.007	<0.003	<0.02	<0.02	0.022	<2	<2	<2
322-3110003734 31113/2.0 20/00/22 2 3011																														
Statistics																														
Number of Results	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Number of Detects	4	4	4	5	4	5	4	5	2	5	5	5	5	5	0	5	0	0	0	5	5	4	5	0	0	0	5	0	0	0
Minimum Concentration	170	0.28	0.87	2	<0.005	0.005	<0.005	4.4	10	1.5	0.33	0.3	0.009	0.005	<1	0.024	<10	<0.02	<0.02	6.5	5.6	<0.005	0.007	<0.003	<0.02	<0.02	0.016	<2	<2	<2
Minimum Detect	170	0.28	0.87	2	0.16	0.005	79	4.4	10	1.5	0.33	0.3	0.009	0.005	ND 11	0.024	ND	ND 40.03	ND 40.03	6.5	5.6	0.13	0.007	ND	ND -0.03	ND 40.03	0.016	ND 42	ND 42	ND
Maximum Concentration Maximum Detect	430 430	0.69	2.1	2	0.66	0.027	330 330	22	11 11	1.5	0.96 0.96	0.41	0.026 0.026	0.015 0.015	<1 ND	0.041	<10 ND	<0.02 ND	<0.02 ND	9.3 9.3	8.5 8.5	0.53 0.53	0.035	<0.003 ND	<0.02 ND	<0.02 ND	0.032	<2 ND	<2 ND	<2 ND
Average Concentration *	258	0.42	1.3	2	0.00	0.027	124	14	7.2	1.5	0.59	0.41	0.020	0.013	0.5	0.041	5	0.01	0.01	8.3	7.6	0.33	0.033	0.0015	0.01	0.01	0.032	1	1	1
Median Concentration *	215	0.35	1.05	2	0.2	0.018	99	14	5	1.5	0.55	0.36	0.018	0.013	0.5	0.036	5	0.01	0.01	8.7	7.9	0.16	0.023	0.0015	0.01	0.01	0.024	1	1	1
Standard Deviation *	118	0.19	0.56	0	0.25	0.0082	123	6.6	3	0	0.24	0.044	0.0078	0.0047	0	0.007	0	0	0	1.1	1.1	0.2	0.01	0	0	0	0.0057	0	0	0
95% UCL (Student's-t) *	395.9	0.636	1.93	2	0.482	0.0254	241	20.55	10.09	1.5	0.813	0.39	0.0245	0.0151	0.5	0.0411	5	0.01	0.01	9.318	8.642	0.386	0.033	0.0015	0.01	0.01	0.0291	1	1	1
% of Detects	100	100	100	100	80	100	80	100	40	100	100	100	100	100	0	100	0	0	0	100	100	80	100	0	0	0	100	0	0	0
% of Non-Detects	0	0	0	0	20	0	20	0	60	0	0	0	0	0	100	0	100	100	100	0	0	20	0	100	100	100	0	100	100	100
* A Non Detect Multiplier of 0.5 has been applied.																														

^{*} A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res/Parkland, Fine Soil

NEPM, 2013, NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure

HEPA, January 2020, PFAS NEMP 2020 Public open space (HIL C)

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

2013, NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil 2013, NEPM 2013 Table 1A(1) HILs Res A Soil

4. Soil BTEX,TRH, Solvents

			BTEX										PAH							Sc	lvents						TPH/TRH					
	Naphthalene (BTEX)	Benzene	. Toluene	. Ethylbenzene	Xylene (m & p) Xylene (o)	. Acenaphthene	4	Anthracene	ذه د	Benzo(b+	. Benzo(g,h,i)perylene	, Benzo(k)fluoranthene	ર્ક 📗	-	. Fluoranthene Fluorene	Indeno(1,2,3-c,d)pyrene	. Naphthalene	. Phenanthrene	Pyrene	PAHs (Sum of total) Methyl Ethyl Ketone	Ace	67-93 t	, C10-C14	, C15-C28	, C29-C36	. C6-C10	C10-	C16-C34	; C10-C36 (Sum of total)	C10-C40 (sum C34-C40	F1 minus BTEX	, F2 minus Naphthalene
EQL	mg/kg 0.5	mg/kg 0.1	mg/kg 0.1		mg/kg mg/kg 0.2 0.1		mg/kg m 0.5				mg/kg 0.5				/kg mg/k .5 0.5			mg/kg 1		g/kg mg/k 0.5 0.5				mg/kg 50				g/kg m .00	ng/kg mg/ 50 10			g mg/kg 50
NEPM 2013 Table 1B(7) Management Limits in Res/Parkland. Fine Soil	0.5	0.1	0.1	0.1	0.2 0.1	0.5	0.5	0.5 0.	5 0.5	0.5	0.5	0.5	0.5	J.5 U.	.5 0.5	0.5	0.5	0.5	0.5	0.5 0.5	0.5	20	20	30	50	800	1.000 3.	500	50 10	10.00	0	30
NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil																																
PFAS NEMP 2020 Ecological direct exposure																																
PFAS NEMP 2020 Public open space (HIL C)																																4
PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)		0714101	2 400														-														0.1.45	200
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space	170	0.7 1 2	3 480														5 170														0 150	0 280
NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil	170	65	105	125					0.7								170										120 1,	300		5.60	0 180	120
NEPM 2013 Table 1A(1) HILs Res A Soil		0.5	100	123					0.7											300							120 1,			3,000	100	
NEPM 2013 Table 1A(1) HILs Rec C Soil																				300						7						
	•				•	•			•				•	'	•			•			'							,				
Lab Report Ni Sample Code Field ID Date Depth Matrix T	уре																															
901484 S22-Jn0063769 BH01/0.2 21/06/22 0.2 Soil	<0.5	<0.1	<0.1		<0.2 <0.1			8.3 1		7	3	7			8 2.4		<5	22		150 <0.5		<20	52	830	430	<20			L,312 1,45			
901484 S22-Jn0063770 BH02/0.2 21/06/22 0.2 Soil	<0.5	<0.1	<0.1	_	<0.2 <0.1			3.7 7.			4.3	8.1		1.6 1			0.7	13		110 <0.5			54	690	510				1,254 1,40			110
901484 S22-Jn0063771 BH03/0.2 21/06/22 0.2 Soil	<0.5	<0.1	<0.1		<0.2 <0.1	_			.5 <0.5			<0.5			0.5 < 0.5		<0.5			0.5 < 0.5		<20	<20	110	130				240 20			<50
901484	<0.5	<0.1	<0.1		<0.2 <0.1	<0.5		<0.5 <0		_	<0.5	<0.5			0.5 < 0.5		<0.5			0.5 <0.5		<20	120	840	740 77	<20 <20			1,700 1,92			
901484	<0.5 <0.5	<0.1 <0.1			<0.2 <0.1 <0.2 <0.1	<0.5 <0.5		<0.5 <0 <0.5 <0	_		<0.5 <0.5	<0.5 <0.5		0.5 <0 0.5 1	0.5 <0.5 1 <0.5		<0.5 <0.5	<0.5		0.5 <0.5 2.5 <0.5		<20 <20	<20 <20	55 160	210				132 110 370 44			<50 <50
901484 S22-Jn0063775 BH07/0.2 21/06/22 0.2 Soil	<0.5	<0.1			<0.2 <0.1	<0.5			2 1.3		0.6	1.6			.4 <0.5		<0.5	1		14 <0.5		<20	32	150	190				372 38			<50
901484 S22-Jn0063776 BH08/ 0.2 21/06/22 0.2 Soil	<0.5	<0.1			<0.2 <0.1	<0.5		<0.5 <0	_		<0.5	<0.5).5 <0.5		<0.5	<0.5		0.5 <0.5		<20	31	130	120				281 22			
901484 S22-Jn0063777 BH09/0.2 21/06/22 0.2 Soil	<0.5	<0.1			<0.2 <0.1	<0.5		<0.5 <0				<0.5			0.5 < 0.5		<0.5			:0.5 <0.5		<20	<20	76	51				127 11			
901484 S22-Jn0063778 BH10/0.2 20/06/22 0.2 Soil	<0.5	<0.1	<0.1	<0.1	<0.2 <0.1	<0.5	<0.5 <	<0.5 <0	.5 0.5	<0.5	<0.5	<0.5	0.5 <	0.5 1	1 <0.5	<0.5	<0.5	0.9	1	3.9 <0.5	<0.5	<20	24	140	130	<20	<50 2	20	294 22	20 <100) <20	<50
901484 S22-Jn0063779 BH11/0.2 20/06/22 0.2 Soil	<0.5	<0.1	<0.1	<0.1	<0.2 <0.1	<0.5	<0.5	<0.5 <0	.5 <0.5	5 <0.5	<0.5	<0.5	<0.5 <	0.5 <0).5 <0.5	<0.5	<0.5	<0.5	<0.5	:0.5 <0.5	<0.5	<20	<20	64	74	<20	<50 1	20	138 12	20 <100) <20	<50
901484 S22-Jn0063780 BH11/2.5 20/06/22 2.5 Soil	<0.5	<0.1			<0.2 <0.1	<0.5		0.5 <0		_	<0.5	<0.5).5 <0.5		<0.5	0.5	10.0	1		<20	<20	110	66				176 15		_	
901484 S22-Jn0063781 BH12/0.2 20/06/22 0.2 Soil	<0.5	<0.1			<0.2 <0.1	<0.5		<0.5 <0	_			<0.5).5 <0.5		<0.5			:0.5 <0.5	<0.5	<20	<20	73	74				147 13			
901484 S22-Jn0063782 BH12/2.5 20/06/22 2.5 Soil	<0.5	<0.1			<0.2 <0.1	<0.5		<0.5 <0			<0.5	<0.5			0.5 < 0.5		<0.5	<0.5		:0.5		<20	<20	<50	<50				<50 <10			<50
901484 S22-Jn0063783 BH13/0.2 20/06/22 0.2 Soil 901484 S22-Jn0063784 BH13/2.5 20/06/22 2.5 Soil	<0.5 <0.5	<0.1 <0.1			<0.2 <0.1 <0.2 <0.1	<0.5 <0.5		<0.5 <0 <0.5 <0			<0.5 <0.5	<0.5			0.5 < 0.5		<0.5 <0.5	<0.5		:0.5 <0.5 :0.5	<0.5	<20 <20	<20 52	<50 130	<50 76				<50 <10 258 23			
901484	<0.5	<0.1			<0.2 <0.1	<0.5		<0.5 <0	_	_		<0.5 <0.5		0.5 <0 0.5 <0).5 <0.5).5 <0.5		<0.5	<0.5		:0.5 <0.5	<0.5	<20	<20	<50	<50				<50 <10			53 <50
901484 S22-Jn0063786 BH14/1.0 20/06/22 1 Soil	<0.5	<0.1			<0.2 <0.1	2.5		2.7 4.			1.6	5.6			.4 1.1		0.7	6.2		75	1 10.5	<20	<200	1,100	1,500				2,600 3,70	_		
901484 S22-Jn0063793 BH15/0.2 20/06/22 0.2 Soil	<0.5	<0.1			<0.2 <0.1	<0.5		<0.5 <0		_	<0.5	<0.5		0.5 <0			<0.5			:0.5 <0.5	<0.5	<20	<20	<50	<50				<50 <10			
901484 S22-Jn0063794 BH15/2.0 20/06/22 2 Soil	<0.5	<0.1	<0.1	<0.1	<0.2 <0.1	<0.5	<0.5 <	<0.5 0.	5 0.5	<0.5	0.6	<0.5	<0.5 <	0.5 0.	.9 <0.5	<0.5	<0.5	<1	1.1	3.6 <0.5	<0.5	<20	36	130	120	<20	<50 2	10	286 21	10 <100	0 <20	<50
901484 S22-Jn0063789 MW01/0.2 20/06/22 0.2 Soil	<0.5	<0.1	<0.1	<0.1	<0.2 <0.1	<0.5	<0.5 <	<0.5 <0	.5 <0.5	5 <0.5	<0.5	<0.5	<0.5 <	0.5 <0).5 <0.5	<0.5	<0.5	<0.5	<0.5	:0.5 <0.5	<0.5	<20	28	130	250	<20	<50 3	00 4	408 43	30 130	<20	<50
901484 S22-Jn0063790 MW01/4.5 20/06/22 4.5 Soil	<0.5	<0.1	<0.1	<0.1	<0.2 <0.1	<0.5	<0.5 <	<0.5 <0	.5 <0.5	5 <0.5	<0.5	<0.5	<0.5 <	0.5 <0).5 <0.5	<0.5	<0.5	<0.5	<0.5	:0.5 <0.5	<0.5	<20	<20	<50	<50	<20	<50 <	100 -	<50 <10	00 <100	0 <20	<50
901484 S22-Jn0063791 MW02/0.2 20/06/22 0.2 Soil	<0.5	<0.1			<0.2 <0.1	<0.5		<0.5 <0			<0.5	<0.5		0.5 <0			<0.5			:0.5 <0.5		<20	<20	65	77				142 12			
901484 S22-Jn0063792 MW02/4.5 20/06/22 4.5 Soil	<0.5	<0.1			<0.2 <0.1	<0.5		<0.5 <0			_	<0.5			0.5 < 0.5		<0.5			:0.5 <0.5		<20	<20	160	120				280 25	_		<50
901484	<0.5	<0.1			<0.2 <0.1	<0.5	<0.5	0.6 2.		_	0.9	3.2		0.5 4.			<0.5	1.8		28 <0.5	<0.5	<20	<20	170 <50	140				310 27	_		
901484 S22-Jn0063788 MW03/4.5 20/06/22 4.5 Soil	<0.5	<0.1	<0.1	<0.1	<0.2 <0.1	<0.5	<0.5	<0.5 <0	.5 <0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 <0).5 <0.5	<0.5	<0.5	<0.5	<0.5	.0.5		<20	<20	<50	<50	<20	<50 <	100	<50 <10	00 <100	/ <20	<50
Statistics																																
Number of Results	26	26	26	26	26 26	26	26	26 2	5 26	26	26	26	26	26 2	6 26	26	26	26	26	26 21	21	26	26	26	26	26	26 2	26	26 26	6 26	26	26
Number of Detects	0	0	0	0	0 0	3		5 6			6	5			3	5	2	7		9 0		0	9	20	20	0			20 20			4
Minimum Concentration	<0.5	<0.1	<0.1	<0.1	<0.2 <0.1	<0.5	<0.5	0.5 0.	5 0.5	<0.5	<0.5	<0.5	0.5 <	0.5 <0).5 <0.5	<0.5	<0.5	0.5	<0.5	0.5 <0.5	<0.5	<20	<20	<50	<50	<20	<50 <	100	<50 <10	00 <100	0 <20	<50
Minimum Detect	ND	ND	ND	ND	ND ND	0.7	0.6	0.5 0.	5 0.5	0.9	0.6	1.6	0.5	0.7 0.	.9 0.7	0.7	0.7	0.5	1	1 ND	ND	ND	24	55	51	ND	53 1	10	127 11	110	ND ND	53
Maximum Concentration	<0.5	<0.1			<0.2 <0.1	2.5		8.3 1			4.3	8.1		1.6 2	_		<5	22		150 <0.5		<20	_	1,100					2,600 3,70			
Maximum Detect	ND	ND	ND	ND	ND ND	2.5		8.3 1			4.3	8.1		1.6 2			0.7	22		L50 ND		ND	120	1,100				_	2,600 3,70		_	200
Average Concentration *	0.25	0.05		0.05	0.1 0.05	0.37	_	0.81 1.	_		0.62	1.2		.36 2.			0.37	1.9		15 0.25		10	26	210	201	10			422 47			49
Median Concentration *	0.25	0.05		0.05	0.1 0.05	0.25		0.25 0.2	_			0.25		.25 0.2						0.25		10	10	120	98.5			_	249 20			
Standard Deviation * 95% UCL (Student's-t) *	0.25	0.05	0.05	0.05	0 0 0.1 0.05	0.45		1.7 2.			0.96	2.2			.8 0.45		0.45	4.9		38 0 7.68 0.25	0.25	10	29 36.14	295 308.9	314	10 (614 816 527.9 748			59 68.37
% of Detects	0.25	0.05	0.05	0.05	0.1 0.05	12		19 2.1			23	1.928		4/2 5.1 12 3			8	27		7.68 0.25 35 0	0.25	0	36.14	77	77	0			77 77			
% of Non-Detects	100	100			100 100				7 73		77	81			9 88		92	73		65 100		100	65	23	23					3 73		85
* A Non Detect Multiplier of 0.5 has been applied.	1													. , ,	1 - 2						1		, ,				-					

^{*} A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res/Parkland, Fine Soil

NEPM, 2013, NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Public open space (HIL C)

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

2013, NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

5. Soil PAH

						BTEX											PAH									Solve	nts						TPH/TRH	l				
														e				e e			a l															_		u l
				Naphthalene (BTEX)	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(b+j)fluoranther	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyre	Naphthalene	Phenanthrene	Pyrene	PAHs (Sum of total)	Methyl Ethyl Ketone	Acetone	67-93	C10-C14	C15-C28	C29-C36	C6-C10	C10-C16	C16-C34	(Sum of	C10-C40 (Sum of total)	C34-C40	8 8
					mg/kg				ng/kg mg/																													/kg mg/kg
EQL	Table 18/7) Management Limits	in Res/Parkland. Fine Soi		0.5	0.1	0.1	0.1	0.2	0.1 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	20	20	50	50	20	50 :	100	50 :	100 10	.00 20	50
NEPM 2013	Table 7 Rec C HSL for Asbestos in	,																														800	1,000 3	,300		10,	,000	
	2020 Ecological direct exposure																																					
PFAS NEMP	2020 Public open space (HIL C)																																					
	2020 Residential with garden/ac	. ,																																				
	Table 1A(3) Rec C Soil HSL for Va Table 1A(3) Res A/B Soil HSL for			E 0.7	1 2 3	490																5															0.1.1	150 280
	Table 1B(5) Generic EIL - Urban I			170	1 2 3	460																170															Ull	150 280
	Table 1B(6) ESLs for Urban Res. F		-	170	65	105	125						0.7									170											120 1	.300		5./	600 18	0 120
NEPM 2013	Table 1A(1) HILs Res A Soil																								300													
NEPM 2013	Table 1A(1) HILs Rec C Soil																								300													
-		Date Depth Mat									-						-	-		-										-	-	_						
901484	S22-Jn0063769 BH01/0.2			<0.5	<0.1	<0.1	<0.1		<0.1 0.7		_		9.6	7	3	7	12	1.3	28			<5	22	27	150	<0.5	<0.5	<20	52		430	<20			1,312 1			
901484	S22-Jn0063770 BH02/0.2			<0.5	<0.1	<0.1	<0.1		<0.1 0.7			_	9.3	6.9	4.3	8.1	9.1	1.6	19			0.7	13	19	110	<0.5	<0.5	<20	54	690	510			,000 1			90 <2	
901484	S22-Jn0063771 BH03/0.2			0.5	<0.1	<0.1	<0.1		<0.1 <0.				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<20	<20	110	130	<20					100 <2	
901484	S22-Jn0063772 BH04/0.2			<0.5 <0.5	<0.1	<0.1	<0.1 <0.1		<0.1 <0.		_		<0.5 <0.5	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<20 <20	120 <20	840	740 77	<20 <20		,300 1			20 <2 100 <2	
901484 901484	S22-Jn0063773 BH05/0.2 S22-Jn0063774 BH06/0.2			(0.5	<0.1	<0.1	<0.1		<0.1 <0. <0.1 <0.		_		<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	0.5	<0.5	1			<0.5	<0.5	<0.5	<0.5 2.5	<0.5 <0.5	<0.5 <0.5	<20	<20	55 160	210	<20					100 <2 .50 <2	
901484	S22-Jn0063775 BH07/0.2			(0.5	<0.1	<0.1	<0.1		<0.1 <0.		_		1.3	0.9	0.6	1.6	1.6	<0.5	2.4			<0.5		2.3	14	<0.5	<0.5	<20	32	150	190	<20					10 <2	
901484	S22-Jn0063776 BH08/ 0.2			<0.5	<0.1	<0.1	<0.1		<0.1 <0.				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5		<0.5	<0.5	<0.5	<0.5	<20	31	130	120	<20					100 <2	-
901484	S22-Jn0063777 BH09/0.2			<0.5	<0.1	<0.1	<0.1		<0.1 <0.		_		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<20	<20	76	51	<20					100 <2	
901484	S22-Jn0063778 BH10/0.2	20/06/22 0.2 Soil		<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 <0.		<0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.5	<0.5	1			<0.5	0.9	1	3.9	<0.5	<0.5	<20	24	140	130	<20		220			100 <2	0 <50
901484	S22-Jn0063779 BH11/0.2	20/06/22 0.2 Soil	l <	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	64	74	<20	<50	120	138	120 <1	100 <2	.0 <50
901484	S22-Jn0063780 BH11/2.5	20/06/22 2.5 Soil	l <	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 <0.	5 <0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	1			<20	<20	110	66	<20	<50	150	176	150 <1	100 <2	0 <50
901484	S22-Jn0063781 BH12/0.2			<0.5	<0.1	<0.1	<0.1		<0.1 <0.				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<20	<20	73	74	<20					100 <2	
901484	S22-Jn0063782 BH12/2.5			<0.5	<0.1	<0.1	<0.1		<0.1 <0.				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5		<0.5	<0.5			<20	<20	<50	<50	<20					100 <2	
901484	S22-Jn0063783 BH13/0.2			<0.5	<0.1	<0.1	<0.1		<0.1 <0.				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<20					100 <2	-
901484 901484	S22-Jn0063784 BH13/2.5			<0.5 <0.5	<0.1	<0.1	<0.1 <0.1		<0.1 <0. <0.1 <0.	_			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	_		<0.5		<0.5	<0.5	<0.5	<0.5	<20 <20	52 <20	130 <50	76 <50	<20 <20					100 <2 100 <2	
901484	S22-Jn0063785 BH14/0.2 S22-Jn0063786 BH14/1.0			<0.5	<0.1	<0.1	<0.1		<0.1 2.5		_		6.3	3.7	1.6	5.6	7.4	0.7	14			0.7	6.2	<0.5 15	75	<0.5	<0.5	<20	<200		1,500			,100		3,700 1,6		
901484	S22-Jn0063793 BH15/0.2			<0.5	<0.1	<0.1	<0.1		<0.1 <0.		_		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5		<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<20					100 <2	
901484	S22-Jn0063794 BH15/2.0			<0.5	<0.1	<0.1	<0.1		<0.1 <0.		_		0.5	<0.5	0.6	<0.5	<0.5	<0.5	0.9			<0.5	<1	1.1	3.6	<0.5	<0.5	<20	36	130	120	<20					100 <2	
901484	S22-Jn0063789 MW01/0.2	20/06/22 0.2 Soil	I <	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	28	130	250	<20	<50	300	408	430 13	.30 <2	0 <50
901484	S22-Jn0063790 MW01/4.5	20/06/22 4.5 Soil	l <	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<20	<50 <	<100	<50 <	<100 <1	100 <2	0 <50
901484	S22-Jn0063791 MW02/0.2	20/06/22 0.2 Soil	l <	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	65	77	<20	<50	120	142 :	120 <1	100 <2	0 <50
901484	S22-Jn0063792 MW02/4.5			<0.5	<0.1	<0.1			<0.1 <0.		_		<0.5	<0.5	<0.5			<0.5	<0.5			<0.5		<0.5	<0.5	<0.5	<0.5	<20	<20		120	<20					100 <2	
901484	S22-Jn0063787 MW03/0.2			<0.5	<0.1	<0.1			<0.1 <0.		_		3.2	2.5	0.9			<0.5	4.3			<0.5	1.8	4.5	28	<0.5	<0.5	<20	<20		140	<20					100 <2	-
901484	S22-Jn0063788 MW03/4.5	20/06/22 4.5 Soil	I <	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<20	<20	<50	<50	<20	<50 <	<100	<50 <	<100 <1	100 <2	0 <50
Statistics																																						
Number of	Results			26	26	26	26	26	26 26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	21	21	26	26	26	26	26	26	26	26	26 2	26 26	5 26
Number of	Detects			0	0	0	0		0 3		5	6	7	5	6	5	7	3	8	3		2	7	8	9	0	0	0	9	20	20	0					7 0	
Minimum C	oncentration		<	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 <0.	5 <0.5	0.5	0.5	0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<20	<50 <	100	<50 <	<100 <1	100 <2	0 <50
Minimum D	etect			ND	ND	ND	ND	ND	ND 0.:	0.6	0.5	0.5	0.5	0.9	0.6	1.6	0.5	0.7	0.9	0.7	0.7	0.7	0.5	1	1	ND	ND	ND	24	55	51	ND	53 :	110	127 :	110 1:	10 NI	D 53
Maximum (oncentration		<	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1 2.	2	8.3	12	9.6	7	4.3	8.1	12	1.6	28	2.4	4.3	<5	22	27	150	<0.5	<0.5	<20	<200	1,100	1,500	<20	<500 2	,100 2	2,600 3	,700 1,6	600 <2	0 <500
Maximum E				ND	ND	ND	ND		ND 2.		8.3		9.6	7	4.3	8.1	12	1.6	28			0.7	22	27	150	ND	ND	ND		1,100	-	ND		_	2,600 3		600 NI	
Average Co				0.25	0.05	0.05	0.05		0.05 0.3				1.4	1	0.62	1.2		0.36	2.9			0.37		2.9	15	0.25	0.25	10	26		201	10					49 10	
Median Cor				0.25	0.05	0.05	0.05		0.05 0.2				0.25	0.25	0.25	0.25		0.25	0.25	_					0.25	0.25	0.25	10	10	120	98.5	10					50 10	
Standard De 95% UCL (St				0	0.05	0.05	0.05	-	0 0.4			_	2.7	1.9	0.96	1 928	3.1 2.521	0.34	6.8 5.163		1.1 1.061 (6.7 5.148	38 27.68	0.25	0.25	0 10	29 36.14		314 306.6	10				814 30 748.2 25	09 0	59 68.37
% of Detect				0	0.05	0.05	0.05		0 12		19	_	2.2/1	1.055	23	1.928	2.521	12	31	12	19	8	27	31	35	0.25	0.25	0	35	77	77	0				77 2		
% of Non-D				100	100	100	100		100 88			77	73	81	77	81	73	88	69	88		92	73	69	65	100	100	100	65	23	23	100		_		23 7		
	ect Multiplier of 0.5 has been an									- 52	01		, ,,						33		<u>-</u>	J-																- 00

^{*} A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res/Parkland, Fine Soil NEPM, 2013, NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Public open space (HIL C) HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A) 2013, NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

6. Soil Asbestos

						Asbe	stos						Asbes	tos										
						& Bonded Asbestos	Friable Asbestos (FA & AF)	ACM - Comment	AF - Comment	% Analysed Material	տ Approximate Sample Mass	Comment As bestos Reported Result	% Extraneous Material	% lron (%)	m Mass ACM	m Mass AF	^{σα} Mass Asbestos in ACM	^{σα} Mass asbestos in AF		m Mass Asbestos in FA & AF	Mass FA	Organic Fibres -	Respirable Fibres - Comment	Synthetic Fibres - Comment
EQL		C-11/D1	1.000				,			0.1			0.1	0.01	•		•	•		•	•			
NEPM 2013 Table 7 Rec C H: NEPM 2013 Table 7 Rec C H:				asbesto	ıs)	0.02%	0.001%																	
Lab Report Number	Sample Code	Field ID	Date	Donth	Matrix Type																			
901484	S22-Jn0063769		21/06/22		Soil	0	0	-	-		523	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		61	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063770	вн02/0.2	21/06/22	0.2	Soil	0	0	-	-		584	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		2	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063771	вн03/0.2	21/06/22	0.2	Soil	0	0	-	-		433	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		3.7	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063772	вн04/0.2	21/06/22	0.2	Soil	0	0	-	-		366	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		4.1	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063773	вн05/0.2	21/06/22	0.2	Soil	0	0	-	-		589	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		18	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063774	вн06/0.2	21/06/22	0.2	Soil	0	0	-	-		383	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		13	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063775	вн07/0.2	21/06/22	0.2	Soil	0.0383	0	-	-		596	ACM: Chrysotile and crocidolite asbestos detected in fibre cement fragments. Approximate raw weight of ACM = 4.6g Total estimated asbestos content in ACM = 0.23g* Total estimated asbestos concentration in ACM = 0.0388 w/w* Organic fibre detected. No trace asbestos detected.		1	4.5676	0	0.2284	0	0	0	0	-	-	-
901484	S22-Jn0063776	внов/ 0.2	21/06/22	0.2	Soil	0	0	-	-		434	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		7	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063777	вно9/0.2	21/06/22	0.2	Soil	0	0	-	-		503	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		3.2	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063778	вн10/0.2	20/06/22	0.2	Soil	0	0	-	-		530	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		2.4	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063779		20/06/22		Soil	0	0	-	-		535	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		3.7	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063780 S22-Jn0063781		20/06/22		Soil	0	0		-	82	561	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre	18	5.5	0	0	0	0	0	0	0	_	-	_
901484	S22-Jn0063782	BH12/2.5	20/06/22	2.5	Soil							detected. No trace asbestos detected.												
901484	S22-Jn0063783	BH13/0.2	20/06/22	0.2	Soil	0	0	-	-	69	637	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.	31	1.8	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063784	BH13/2.5	20/06/22	2.5	Soil							No asbestos detected at the reporting												
901484	S22-Jn0063785 S22-Jn0063786	·	20/06/22		Soil	0	0	-	-	97	767	limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.	2.8	2.1	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063793				Soil	0	0			63	536	No asbestos detected at the reporting	37	58	0	0	0	0	0	0	0			
901484	S22-Jn0063794	BH15/0.2 BH15/2.0	20/06/22		Soil		0				330	limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.	37	30					0		-			
901484	S22-Jn0063789	MW01/0.2	20/06/22	0.2	Soil	0	0	-	-		490	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		40	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063790	MW01/4.5	20/06/22	4.5	Soil																			
901484	S22-Jn0063791				Soil	0	0	-	-	72	726	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.	28	28	0	0	0	0	0	0	0	-	-	-
901484	S22-Jn0063792	MW02/4.5	20/06/22	4.5	Soil							No asbestos detected at the reporting								\dashv				
901484	S22-Jn0063787 S22-Jn0063788				Soil	0	0	-	-		596	limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.		3.5	0	0	0	0	0	0	0	-	-	-
			,,,		1,,=	-						1	-											
Statistics Number of Results						18	18			5	18		5	18	18	18	18	18	18	18	18			
Number of Detects						18	18			5	18		5	18	18	18	18	18	18	18	18			
Minimum Concentration Minimum Detect						0	0			63	366		2.8	1	0	0	0	0	0	0	0			
Maximum Concentration						0.0383	0			63 97	366 767		37	61	4.5676		0.2284		0		0			
Maximum Detect						0.0383	0			97	767		37	61	4.5676	0	0.2284	0	0	0	0			
Average Concentration *				_		0.0021	0			77	544 535.5		23	14 3.9	0.25	0	0.013	0	0	$\overline{}$	0			
Median Concentration * Standard Deviation *						0.009	0			72 13	105		13	19	1.1	0	0.054	0	0	0	0			
95% UCL (Student's-t) *						0.00583	0			89.29	587		36.13	22.31	0.695	0	0.0348	0	0	0	0			
% of Detects % of Non-Detects						100	100			100	100		100	100	100 0	100	100	100	100 0	\rightarrow	100 0			
* A Non Detect Multiplier of	f 0.5 has been ap	olied.		-	1		U				U	1		U	U	U	U	U	U	J	J			

Environmental Standards

NEPM, NEPM 2013 Table 18(7) Management Limits in Res/Parkland, Fine Soil

NEPM, 2013, NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure

HEPA, January 2020, PFAS NEMP 2020 Public poen space (HL C)

HEPA, January 2020, PFAS NEMP 2020 Public open space (HL C)

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

2013, NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1B(6) ESL for Urban Res, Fine Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(1) HILs Rec C Soil

7. Soil Phenols

															Phen	nols									
						3&4-Methylphenol (m&p-cresol)	. 2,4,5-Trichlorophenol	. 2,4,6-Trichlorophenol	, 2,4-Dichlorophenol	. 2,4-Dimethylphenol	, 2,4-Dinitrophenol	. 2,6-Dichlorophenol	, 2-Chlorophenol	. 2-Methylphenol	2-Nitrophenol	4,6-Dinitro-2- methylphenol	4,6-Dinitro-o-cyclohexyl phenol	4-chloro-3- methylphenol	4-Nitrophenol	Cresol Total	. Pentachlorophenol	. Tetrachlorophenols	. Phenol	Phenols (Total Halogenated)	Phenols (Total Non Halogenated)
EQL	I					mg/kg 0.4	mg/kg 1	mg/kg	mg/kg 0.5	mg/kg 0.5	mg/kg 5	mg/kg 0.5	mg/kg	mg/kg 0.2	mg/kg 1	mg/kg 5	mg/kg 20	mg/kg 1	mg/kg 5	mg/kg 0.5	mg/kg 1	mg/kg 10	mg/kg 0.5	mg/kg 1	mg/kg 20
NEPM 2013 Table 1B(7) Mana	 agement Limits in	n Res/Parklan	d Fine Soil			0.4	1	1	0.5	0.5	5	0.5	0.5	0.2	1	5	20	1	5	0.5		10	0.5	1	20
NEPM 2013 Table 7 Rec C HS			lu, i ilic son																						
PFAS NEMP 2020 Ecological of																									
PFAS NEMP 2020 Public oper	n space (HIL C)																								
PFAS NEMP 2020 Residential		•																							
NEPM 2013 Table 1A(3) Rec (
NEPM 2013 Table 1A(3) Res A																									
NEPM 2013 Table 1B(5) Gene			pen Space																						
NEPM 2013 Table 1B(6) ESLs		ne Soil																		400	100		2.000		
NEPM 2013 Table 1A(1) HILS																				400	120		3,000		
NEPM 2013 Table 1A(1) HILS	Rec C Soil																			4,000	120		40,000		
Lab Report Number	Sample Code	Field ID	Date	Denth	Matrix Type																				
901484	S22-Jn0063769		21/06/22		Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063770		21/06/22		Soil	0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063771		21/06/22		Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063772		21/06/22		Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063773		21/06/22		Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063774		21/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063775	BH07/0.2	21/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063776	BH08/ 0.2	21/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063777	BH09/0.2	21/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063778	BH10/0.2	20/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063779	BH11/0.2	20/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063780	BH11/2.5	20/06/22	2.5	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063781	BH12/0.2	20/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063782	BH12/2.5	20/06/22	2.5	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063783	BH13/0.2	20/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063784	BH13/2.5	20/06/22	2.5	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063785	BH14/0.2	20/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063786	BH14/1.0	20/06/22	1	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063793	BH15/0.2	20/06/22	0.2	Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484		-	20/06/22		Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484					Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063790				Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484		<u> </u>			Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484	S22-Jn0063792				Soil	<0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
901484 901484	S22-Jn0063787 S22-Jn0063788				Soil	<0.4	<1 <1	<1 <1	<0.5 <0.5	<0.5 <0.5	<5 <5	<0.5 <0.5	<0.5 <0.5	<0.2	<1 <1	<5 <5	<20 <20	<1 <1	<5 <5	<0.5 <0.5	<1 <1	<10 <10	<0.5 <0.5	<1 <1	<20 <20
Statistics	322-3110003788	101000374.3	20/00/22	7.3	3011	10.4	\1	\1	10.5	VO. 3	\ \	VO. 3	VO. 3	NO.2	\1	\ \	120	\1		VO. 5		110	VO. 3	\1	120
Number of Results						26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
Number of Detects						1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration						0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
Minimum Detect						0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	-					0.4	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<0.2	<1	<5	<20	<1	<5	<0.5	<1	<10	<0.5	<1	<20
Maximum Detect						0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND -	ND	ND	ND
Average Concentration *						0.21	0.5	0.5	0.25	0.25	2.5	0.25	0.25	0.1	0.5	2.5	10	0.5	2.5	0.25	0.5	5	0.25	0.5	10
Median Concentration *						0.2	0.5	0.5	0.25	0.25	2.5	0.25	0.25	0.1	0.5	2.5	10	0.5	2.5	0.25	0.5	5	0.25	0.5	10
Standard Deviation *						0.039	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
95% UCL (Student's-t) *						0.221	0.5	0.5	0.25	0.25	2.5	0.25	0.25	0.1	0.5	2.5	10	0.5	2.5	0.25	0.5	5	0.25	0.5	10
% of Detects						4	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
% of Non-Detects	0.5.5	1:				96	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
* A Non Detect Multiplier of	U.5 has been app	iied.																							

^{*} A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res/Parkland, Fine Soil

NEPM, 2013, NEPM 2013 Table 7 Rec C HSL for Asbestos in Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure

HEPA, January 2020, PFAS NEMP 2020 Public open space (HIL C)

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

2013, NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil 2013, NEPM 2013 Table 1A(1) HILs Rec C Soil

9. Water Phenols, CH, HB and Herb

Halogenated Benzenes

		3&4-Methylphenol (m&p-cresol)	2,4,5-Trichlorophenol	. 2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	. 2,6-Dichlorophenol	2-Chlorophenol	2-Methylphenol	2-Nitrophenol	4,6-Dinitro-2- methylphenol	4,6-Dinitro-o-cyclohexyl phenol	4-chloro-3- methylphenol	4-Nitrophenol	Cres ol Total	. Pentachlorophenol	. Tetrachlorophenols	Phenol	Phenols (Total Halogenated)	Phenols (Total Non Halogenated)	Benzal Chloride	Benzotrichloride	Benzyl chloride	. Hexachlorobutadiene	Hexachlorocyclopentadi ene	Hexachloroethane	1,2,3,4- tetrachlorobenzene	1,2,3,5- Tetrachlorobenzene	1,2,3-trich lorobenzene	1,2,4,5- tetrachlorobenzene	1,2,4-trich lorobenzene	1,2-dichlorobenzene	1,3,5-Trichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Hexachlorobenzene	. Pentachlorobenzene	Dinoseb
		μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL		6	10	10	3	3	0.03	3	3	3	10	30	100	10	30	0.01	10	30	3	0.01	0.1	0.1	0.1	0.005	5	5	5	0.005	0.005	5	5	5	5	5	5	5	5	5	100
ANZG (2018) Freshwater 95% LOSP Toxicant DGVs				20	160		0.045		490								10		320								360	0.004	0.005	10	7	170	160	13	260	60	0.1	2	
ANZG (2018) Marine Water 95% LOSP Toxicant DGVs																	22		400									0.004	0.005		5	80		13			0.1	2	
PFAS NEMP 2020 Freshwater 95%																																							
PFAS NEMP 2020 Interim Marine 95%																																							
NEPM 2013 Table 1C GILs, Fresh Waters				3	120		0.045		340								3.6		320								290			3		85	160		260	60			
NEPM 2013 Table 1C GILs, Marine Waters																	11		400													20							
NEPM 2013 Table 1A(4) Res HSL A & B GW for Vapour Intrusion NEPM 2013 Table 1A(4) Rec HSL C GW for Vapour Intrusion, Cla																																							
NEPIVI 2013 Table 1A(4) Rec HSL C GW for Vapour Intrusion, Cia	dy																																				$\overline{}$		
902403 S22-JI0001340 MW01 28/06/22 6 902403 S22-JI0001341 MW02 28/06/22 3	Matrix Typ Water Water	<6 <6 <6	<10 <10	<10 <10	<3	<3	<0.03	<3	3 3	<3 <3 <3	<10 <10	<30 <30 <30	<100 <100	<10 <10	<30 <30 <30		<10 <10	<30 <30 <30	<3	<0.01	<0.1	<0.1	<0.1	<0.005 <0.005 <0.005	<5 <5	<5 <5 <5	<5 <5 <5	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<5 <5 <5	<5 <5	<5 <5	<5 <5 <5	<5 <5	<5 <5	<5 <5 <5	<5 <5	<5 <5	<100 <100 <100
902403 S22-310001342 MW03 26/06/22 2	Water	<0	<10	<10	<3	<3	<0.03	<3	<3	< 5	<10	<30	<100	<10	<30	<0.01	<10	<30	<3	<0.01	<0.1	<0.1	<0.1	<0.005	<5	(5)	<5	<0.005	<0.005		<5	<5		<5	<5	- 45	<5	<5	<100
Number of Results		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Number of Detects		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration		<6	<10	<10	<3	<3	<0.03	<3	<3	<3	<10	<30	<100	<10	<30	<0.01	<10	<30	<3	<0.01	<0.1	<0.1	<0.1	<0.005	<5	<5	<5	<0.005	<0.005	<5	<5	<5	<5	<5	<5	<5	<5	<5	<100
Minimum Detect		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration		<6	<10	<10	<3	<3	<0.03	<3	<3	<3	<10	<30	<100	<10	<30	<0.01	<10	<30	<3	<0.01	<0.1	<0.1	<0.1	<0.005	<5	<5	<5	<0.005	<0.005	<5	<5	<5	<5	<5	<5	<5	<5	<5	<100
Maximum Detect		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration *		3	5	5	1.5	1.5	0.015	1.5	1.5	1.5	5	15	50	5	15	0.005	5	15	1.5	0.005	0.05	0.05	0.05	0.0025	2.5	2.5	2.5	0.0025	0.0025	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	50
Median Concentration *		3	5	5	1.5	1.5	0.015	1.5	1.5	1.5	5	15	50	5	15	0.005	5	15	1.5	0.005	0.05	0.05	0.05	0.0025	2.5	2.5	2.5	0.0025	0.0025	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	50
Standard Deviation *		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
95% UCL (Student's-t) *		3	5	5	1.5	1.5	0.015	1.5	1.5	1.5	5	15	50	5	15	0.005	5	15	1.5	0.005	0.05	0.05	0.05	0.0025	2.5	2.5	2.5	0.0025	0.0025	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	50
% of Detects		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% of Non-Detects		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
* A Non Detect Multiplier of 0.5 has been applied.										,,,,													-													, ,,			

Environmental Standards

ANZG, March 2021, ANZG (2018) Freshwater 95% LOSP Toxicant DGVs
ANZG, March 2021, ANZG (2018) Marine Water 95% LOSP Toxicant DGVs
HEPA, January 2020, PFAS NEMP 2020 Freshwater 95%
HEPA, January 2020, PFAS NEMP 2020 Interim Marine 95%
2013, NEPM 2013 Table 1C GILS, Fresh Waters
2013, NEPM 2013 Table 1C GILS, Marine Waters
2013, NEPM 2013 Table 1A(4) Res HSL A & B GW for Vapour Intrusion, Clay
2013, NEPM 2013 Table 1A(4) Rec HSL C GW for Vapour Intrusion, Clay

10. Water Hydrocarbons, PCBs

							BTEX											PAH										P	CBs			So	vents						TP	PH					7
													Ī						a			שַ										33			\top	\top	\top	T							1
				Naphthalene (BTEX)	Benzene	Toluene	Ethylbenzene	Xylene	Xylene (o)	Xylene Total	Acenaphthene Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(b+j)fluoranthen	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	PAHs (Sum of total)	Arochlor 1016	Arochlor 1221	Arochlor 1232 Arochlor 1242	Arochlor	Arochlor 1254	Arochlor 1260 PCBs (Sum of total)	Methyl Ethyl K	Acetone	6-93	<u> </u>		C29-C36	C6-C10	C10-C16	C16-C34	C10-C36 (Sum of total)	C10-C40 (Sum of total)	C34-C40	F1 minus BTEX F2 minus Naphthalene	
						μg/L					g/L μg/									μg/L με				μg/L							ıg/L μg/		mg/						mg/L					ng/L mg/L	
EQL				0.01	_	1				3 :	1 1	1	_		0.001	1	1	1		1	1 1	. 1		1	1	5	5 5	5 5	_		5 5	5	0.00	5 20	50	100	100	0.02	0.05	0.1	100	100	0.1	0.02 0.05	
ANZG (2018) Freshwater 95	5% LOSP Toxicant	DGVs				180		- 3	350			0.4		0.2						1.4			2					0.6		0.03								4							4
ANZG (2018) Marine Water	95% LOSP Toxica	nt DGVs		0.07	700	180	80					0.4		0.2						1.4		70	2													4		4	\perp						4
PFAS NEMP 2020 Freshwat	er 95%																																												4
PFAS NEMP 2020 Interim M																																													4
NEPM 2013 Table 1C GILs, I	Fresh Waters			0.016	950				350 5	50												16						0.3		0.01															4
NEPM 2013 Table 1C GILs, I				0.05	500																	50																							4
NEPM 2013 Table 1A(4) Res	s HSL A & B GW fo	r Vapoui	r Intrusion, Clay		5000)																																							4
NEPM 2013 Table 1A(4) Red	c HSL C GW for Va	pour Inti	rusion, Clay																																										4
Lab Report Sample Code	1 1	Ta (m	ater ble bgs) Matrix Typ																									-				1													
902403 S22-Jl0001340	MW01 28/06	/22	6 Water	<0.02	l <1	<1	<1 <	<2	<1 <	<3 <	1 <1	<1	<1	<1	<0.001	<1	<1	<1	<1	<1 <	:1 <	1 <1	<1	<1	<1	<5	<5 <	<5 <5	<5	<5	<5 <5	<5	<0.00	05 <20	50> ل	100	<100	<0.02	<0.05	<0.1	100	<100	<0.1 <	0.02 < 0.05	4
902403 S22-Jl0001341	MW02 28/06	/22	3 Water	<0.02	l <1	<1	<1 <	<2	<1 <	<3 <	1 <1	<1	<1	<1	<0.001	<1	<1	<1	<1	<1 <	1 <	1 <1	<1	<1	<1	<5	<5 <	<5 <5	<5	<5	<5 <5	<5	<0.00	05 <20) 90	1,10	300	<0.02	0.17	1.2	1,490 1	1,470	0.1 <	0.02 0.17	
902403 S22-Jl0001342	MW03 28/06	/22	2 Water	<0.03	l <1	<1	<1 -	<2	<1 <	<3 <	1 <1	<1	<1	<1	<0.001	<1	<1	<1	<1	<1 <	1 <	1 <1	<1	<1	<1	<5	<5 <	<5 <5	<5	<5	<5 <5	<5	<0.00	05 <20) <50) <100	<100 م	<0.02	<0.05	<0.1	<100 ·	<100	<0.1	:0.02 <0.05	
Statistics																																													
Number of Results				3	3	3	3	3	3	3 :	3 3	3	3	3	3	3	3	3	3	3	3 3	3	3	3	3	3	3 3	3 3	3	3	3 3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	1
Number of Detects				0	0	_	-	-	_		0 0	0	0	0	0	0	0					0		0				0 0		0	0 0		0					0	1	1			1	0 1	1
Minimum Concentration				<0.03	+ -		-				1 <1	_	<1	-	<0.001	+ -	<1	_		<1 <		1 <1		+ -	-			5 <5	_	1	<5 <5	_	_	05 <20	_	_	_		<0.05					0.02 <0.05	١
Minimum Detect				ND		_				_	ID ND		+	ND	ND	ND	ND				ID N			1 1		_	ND N		_	 	ND ND	_	ND		_	_			0.17					ND 0.17	\dashv
Maximum Concentration				<0.03	_	<1		-	_	<3 <		_	<1		<0.001	+	<1				_	1 <1	_	1 1	_			5 <5			<5 <5			05 <20										0.02 0.17	_
Maximum Detect				ND		ND			ND N		ID ND		_	ND	ND	ND	ND				ID N		_					ID ND	_	_	ND ND	_	ND				_		0.17					ND 0.17	_
Average Concentration *					_			_		1.5 0	_		+		0.0005	+	0.5		-	0.5 0	_	5 0.5	_	0.5				.5 2.5		1	2.5 2.5			25 10										0.01 0.073	_
Median Concentration *				0.00	_						.5 0.5		+		0.0005		0.5			0.5 0		5 0.5						.5 2.5	_	_	2.5 2.5		_	25 10					0.025					0.01 0.025	_
Standard Deviation *				0	0	0					0 0	0	0	0	0	0	0			0 (0	0			0 0	0		0 0	0	0	0	_				+ + +		817			0 0.084	_
95% UCL (Student's-t) *				0.00		_		-			.5 0.5		0.5	0.5	0.0005	+ -	_		_	0.5 0				_	-			_			2.5 2.5	2.5	_	25 10	_									0.01 0.214	_
% of Detects				0.00.	0	0				0 (0.5	0	0	0	0	0			0 (0 0		0.5	0	0	0	0 (0	0	0 0	0	0.002	0	33		33	0.01		33				0 33	_
% of Non-Detects		-		_	100	+ -	100 1	-	-	-		+ -	100	100	100	100	100	-	-	-		-	_	-	100	-		-		 	100 100	100	_	100							33			100 67	1
, a d. Holl Beteets				130	100	100	00 1	_55	-50 1		-5 -00	100	100	100		100	100		_00	_55 1		00		100	_00	_00	-55 10			100			100							٠,					

^{*} A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

ANZG, March 2021, ANZG (2018) Freshwater 95% LOSP Toxicant DGVs ANZG, March 2021, ANZG (2018) Marine Water 95% LOSP Toxicant DGVs HEPA, January 2020, PFAS NEMP 2020 Freshwater 95% HEPA, January 2020, PFAS NEMP 2020 Interim Marine 95% 2013, NEPM 2013 Table 1C GILs, Fresh Waters

2013, NEPM 2013 Table 1C GILs, Marine Waters

2013, NEPM 2013 Table 1A(4) Res HSL A & B GW for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(4) Rec HSL C GW for Vapour Intrusion, Clay

TABLE 1. Criteria Excee	dances			
			Perfluorooctanesulfo nic acid (PFOS)	Ammonia as N
			mg/L	μg/L
		LOD	0.000000	5
		LOR	0.0000002	5
ANZG (2018) Freshwater 95% LOSP Toxicant DGVs	(March 2021)	LUR	0.0000002	900
ANZG (2018) Freshwater 95% LOSP Toxicant DGV	,	LUR	0.0000002	-
, ,	Vs (March 2021)	LOR	0.00013	900
ANZG (2018) Marine Water 95% LOSP Toxicant DG	Vs (March 2021)	LOR		900
ANZG (2018) Marine Water 95% LOSP Toxicant DG PFAS NEMP 3.0 Draft (Marine 95% Species Protect	Vs (March 2021)	LOR		900
ANZG (2018) Marine Water 95% LOSP Toxicant DG PFAS NEMP 3.0 Draft (Marine 95% Species Protect NEPM 2013 Table 1C GILs, Fresh Waters	Vs (March 2021) ion)	LOR		900

Lab Report N	umbei Sample Code	Field ID	Date		
315215	315215-1	MW04	25/01/23	0.0000032	440
315215	315215-2	MW05	25/01/23	0.000008	230
315215	315215-3	MW06	25/01/23	0.0000110	7,800
306283	306283-1	MW01	20/09/22	0.0000710	41
306283	306283-2	MW02	20/09/22	0.0001600	10,000
306283	306283-3	MW03	20/09/22	0.0001700	17
902403	S22-JI0001340	MW01	28/06/22	0.0000070	90
902403	S22-JI0001341	MW02	28/06/22	<0.000001	8,700
902403	S22-JI0001342	MW03	28/06/22	0.0001800	30

^{*} A Non Detect Multiplier of 0.5 has been applied.

LOR = Laboratory limit of reporting

Environmental Standards

ANZG, March 2021, ANZG (2018) Freshwater 95% LOSP Toxicant DGVs (March 2021)

ANZG, March 2021, ANZG (2018) Marine Water 95% LOSP Toxicant DGVs (March 2021)

HEPA, January 2020, PFAS NEMP 2020 Freshwater 95%

HEPA, January 2020, PFAS NEMP 2020 Interim Marine 95%

2013, NEPM 2013 Table 1C GILs, Fresh Waters

2013, NEPM 2013 Table 1C GILs, Marine Waters

2013, NEPM 2013 Table 1A(4) Res HSL A & B GW for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(4) Rec HSL C GW for Vapour Intrusion, Clay

Upgradient Groundwater Invest Concord High School Version : On behalf of School Infrastruct																																		i	Εn	vi ıl	integrit	ty.
TABLE 2.	PFAS																																					
				10.2 Fluorobiomer suffonic acid (10.2 FTS)	4:2 Fluo rot elomer suffonic acid (4:2 FTS)	8.2 Fluo not alom er suffonio acid (8.2 FTS)	N-Ethyl perfluo roo ctane suffo namide	Netryl- perfluo roo ctan esuffo namidoacetic acid NPFOSAA	N. ethylperfluorooctanes uffonamidoethanol (NE IFO SE)	N-Methyl perfluo roo ctan e suffo namid e (NMeFO SA)	N- methysperfluo rooctan e sulfonamidoacetic acid (MMeFOSAA)	N- Methylperfluoroodan esulfonamidoethanol (N-MeFOSE)	Perfluorobutane sulfonic acid (PFBS)	Perfluorobutanolo acid (PFBA)	Perfluorodecanesuifo nic acid (PFDS)	Perfluorodecano ic acid (PF DA)	Perfluorododecanoic acid (PF DoDA)	Perfluorohaptane sulfonic acid (PFHpS)	Perfluorohaptanoic acid (PFHpA)	Perfluorohaxane sulfonic acid (PFHxS)	Perfluorohaxanoic acid (PFHxA)	Perfluorononanesulfo nic acid (PFNS)	Perfluoronomanoic acid (PFNA)	Perfluoro octane sull'onamide (FOSA)	Perfluorooctanesulfo nic acid (PFOS)	Perfluoro pentane sulfonic acid (PFPeS)	Perfluoropentanoic acid (PFP aA)	Perfluoropropanesulf onic acid (PFPrS)	Perfluorobstradecanol c acid (PF TeDA)	Perfluorofridecanoic acid (PF TrDA)	Perfluoroundecanolo acid (PF UnDA)	Sum of en Health PFAS (PFHxS + PFOS + PFOAY	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)*	6.2 Fluo not alom or suffonic acid (6.2 FTS)	Perfluorooctanole acid (PFOA)
				µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	pg/L	µg/L	µg/L		µg/L	mg/L	µg/L	µg/L	mg/L	µg/L	pg/L	mg/L	µg/L	µg/L	µg/L	µg/L				µg/L	mg/L	mg/L
ANZG (2018) Fresh			LOR		0.001	0.0000004	0.005	0.002	0.005	0.005	0.002	0.005	0.0004	0.002	0.001	0.001	0.001	0.001	0.0004	0.0002	0.0004 (0.000001	0.001	0.005	0.0000002	0.001	0.001	0.000001	0.001	0.001	0.001	0.001	0.0002	1.005	0.0002	0.0002	0.0000004	0.0000002
	ne Water 95% LOSE						_													_	_	_				-							=		_	_		
PFAS NEMP 2020 F		TOROGEN D	OF S (MISSION 20)				_														_				0.00013													0.22
PFAS NEMP 2020 I																									0.00013													0.22
	1C GILs. Fresh Wat	ers																							223013													
	1C GILs, Marine Wa																																					
NEPM 2013 Table 1	1A(4) Res HSLA & I	B GW for W	apour Intrusion,	Clay																																		
NEPM 2013 Table 1	1A(4) Rec HSL C G	W for Vapou	ır Intrusion, Clay	4																																		
Lab Report Numbe		Field ID									_			_			_	_	_			_					_					_		_	_			
315215	315215-1	MW04 MW05	25/01/23	<0.002	<0.001	<0.0000004	<0.1	<0.002	<0.5	<0.05	<0.004	<0.05	0.002 <0.0004	<0.02	<0.002	<0.002	<0.005				0.003	_	<0.001	<0.02	0.0000032		0.005 <0.004		<0.05	<0.01	<0.002		0.029		0.006		<0.0000004 <0.0000004	0.0000088
315215 315215	315215-2 315215-3	MW06	25/01/23	<0.002	<0.001	<0.0000004	<0.1	0.004	<0.5	<0.05	<0.004	<0.05	0.004	<0.02	<0.002	<0.002	<0.005				<0.004	_	<0.001	<0.02	0.0000008	<0.001	<0.004		<0.05	<0.01	<0.002	-	0.003				<0.0000004	0.0000010
306283	306283.1	MWOO	20/09/22	<0.002	<0.001	<0.0000004	<0.1	<0.004	<0.5	<0.05	<0.002	<0.05	0.004	0.044	<0.002	<0.002	<0.005				0.008	_	0.004	< 0.01	0.0000710		0.130		<0.05	<0.01	<0.002	-	0.610			0.160	0.000	0.0000087
306283	305283.2	MW02	20/09/22	<0.002	<0.001	<0.0000004	<0.1	<0.002	<0.5	<0.05	<0.002	<0.05	0.007	<0.020	<0.002	<0.002	<0.005				0.013	_	<0.001	<0.01	0.00000710	0.004	0.022		<0.05	<0.01	<0.002		0.260			0.180	0.000	0.0000160
306283	306283.3	MWW23	20/09/22	<0.002	<0.001	< 0.0000004	<0.1	<0.002	<0.5	<0.05	<0.002	<0.05	0.016	0.053	<0.002	<0.002	< 0.005				0.140		0.004	<0.01	0.0001700		0.170		<0.05	<0.01	<0.002		1.100			0.440	0.000	0.0002600
902403	S22-JI0001340	MW01	28/06/22	<0.001	<0.001	<0.000001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	0.012	<0.001	<0.001	< 0.001					<0.000001	<0.001	<0.005	0.0000070	0.003	0.043	0.000	<0.001	<0.001	<0.001	0.035					<0.000005	0.0000170
902403	S22-JI0001341	MW02	28/06/22	<0.001	<0.001	<0.000001	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.001	0.014	<0.001	<0.001	< 0.001	<0.001	0.005	0.015	0.007 <	<0.000001	<0.001	<0.005	< 0.000001	< 0.001	0.026	<0.000001	<0.001	<0.001	<0.001	0.025	0.077	0.077	0.015	0.010	<0.000005	0.0000100
902403	S22-JI0001342	MW03	28/06/22	<0.001	<0.001	< 0.000001	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.001	880.0	< 0.001	< 0.001	< 0.001	0.032	0.200	0.082	0.160 <	<0.000001	0.005	<0.005	0.0001800	0.038	0.280	0.000	<0.001	<0.001	<0.001	0.602	1.415	1.330	0.262	0.520	<0.000005	0.0003400
							•	•								•										•						_		_				
Statistics																																						
															6	6	6	6	6	6	6	3	6	6	6	6	6	3	6	6	6	3				6	6	6
Number of Results				6	6	6	6	6	6	6	6	6	6	6																								
Number of Detects	s			0	0	0	0	0	0	0	0	0	4	5	0	0	0	4	6	6	6	0	3	0	5	5	6	2	0	0	0	3			6	6	3	6
Number of Detects Minimum Concentr	s			0 <0.001	0 <0.001	0 <0.0000004	0 <0.005	0 <0.002	0 <0.005	0 <0.005	0 <0.002	0 <0.005	4 <0.001	5 0.012	0 <0.001	0 <0.001	0 <0.001	4 <0.001	0.004	0.011	0.007 <	<0.000001	<0.001	<0.005	<0.000001	<0.001	0.022	<0.000001	<0.001	<0.001	<0.001	0.025	0.077	0.077	0.015	0.01	0.000002	0.00001
Number of Detects Minimum Concentr Minimum Detect	tration			0 <0.001 ND	0 <0.001 ND	0 <0.0000004 ND	0 <0.005 ND	0 <0.002 ND	0 <0.005 ND	0 <0.005 ND	0 <0.002 ND	0 <0.005 ND	4 <0.001 0.005	5 0.012 0.012	0 <0.001 ND	0 <0.001 ND	0 <0.001 ND	4 <0.001 0.006	0.004 0.004	0.011	0.007 <	<0.000001 ND	<0.001 0.004	<0.005 ND	<0.000001	<0.001	0.022	<0.000001 0.000002	<0.001 ND	<0.001 ND	<0.001 ND	0.025	0.077	0.077	0.015	0.01	0.000002 0.000002	0.00001 0.00001
Number of Detects Minimum Concentr Minimum Detect Maximum Concent	tration			0 <0.001 ND <0.002	0 <0.001 ND <0.001	0 <0.0000004 ND <0.000001	0 <0.005 ND <0.1	0 <0.002 ND <0.005	0 <0.005 ND <0.5	0 <0.005 ND <0.05	0 <0.002 ND <0.005	0 <0.005 ND <0.05	4 <0.001 0.005 0.02	5 0.012 0.012 0.088	0 <0.001 ND <0.002	0 <0.001 ND <0.002	0 <0.001 ND <0.005	4 <0.001 0.006 0.032	0.004 0.004 0.2	0.011 0.011 0.085	0.007 < 0.007 0.16 <	<0.000001 ND <0.000001	<0.001 0.004 0.005	<0.005 ND <0.01	<0.000001 0.000007 0.00018	<0.001 0.003 0.038	0.022 0.022 0.28	<0.000001 0.000002 0.00001	<0.001 ND <0.05	<0.001 ND <0.01	<0.001 ND <0.002	0.025 0.025 0.602	0.077 (0.077 (1.415	0.077 0.077 1.33	0.015 0.015 0.262	0.01 0.01 0.52	0.000002 0.000002 <0.000005	0.00001 0.00001 0.00034
Number of Detects Minimum Concentr Minimum Detect Maximum Concent Maximum Detect	s tration			0 <0.001 ND <0.002 ND	0 <0.001 ND <0.001 ND	0 <0.0000004 ND <0.000001 ND	0 <0.005 ND <0.1 ND	0 <0.002 ND <0.005 ND	0 <0.005 ND <0.5 ND	0 <0.005 ND <0.05 ND	0 <0.002 ND <0.005 ND	0 <0.005 ND <0.05 ND	4 <0.001 0.005 0.02 0.02	5 0.012 0.012 0.088 0.088	0 <0.001 ND <0.002 ND	0 <0.001 ND <0.002 ND	0 <0.001 ND <0.005 ND	4 <0.001 0.006 0.032 0.032	0.004 0.004 0.2 0.2	0.011 0.011 0.085 0.085	0.007 < 0.007 0.16 < 0.16	<0.000001 ND <0.000001 ND	<0.001 0.004 0.005 0.005	<0.005 ND <0.01 ND	<0.000001 0.000007 0.00018 0.00018	<0.001 0.003 0.038 0.038	0.022 0.022 0.28 0.28	<0.000001 0.000002 0.00001 0.00001	<0.001 ND <0.05 ND	<0.001 ND <0.01 ND	<0.001 ND <0.002 ND	0.025 0.025 0.602 0.602	0.077 (0.077 (1.415 1.415	0.077 0.077 1.33 1.33	0.015 0.015 0.262 0.262	0.01 0.01 0.52 0.52	0.000002 0.000002 <0.000005 0.0000044	0.00001 0.00001 0.00034 0.00034
Number of Detects Minimum Concentr Minimum Detect Maximum Concent Maximum Detect Average Concentra	s tration tration			0 <0.001 ND <0.002 ND 0.00075	0 <0.001 ND <0.001 ND 0.0005	0 <0.0000004 ND <0.000001 ND 0.00000035	0 <0.005 ND <0.1 ND 0.026	0 <0.002 ND <0.005 ND 0.0018	0 <0.005 ND <0.5 ND 0.13	0 <0.005 ND <0.05 ND 0.014	0 <0.002 ND <0.005 ND 0.0018	0 <0.005 ND <0.05 ND 0.014	4 <0.001 0.005 0.02 0.02 0.0081	5 0.012 0.012 0.088 0.088 0.037	0 <0.001 ND <0.002 ND 0.00075	0 <0.001 ND <0.002 ND 0.00075	0 <0.001 ND <0.005 ND 0.0015	4 <0.001 0.006 0.032 0.032 0.013	0.004 0.004 0.2 0.2 0.074	0.011 0.011 0.085 0.085 0.045	0.007 < 0.007 0.16 < 0.16 0.075 0	ND ND <0.000001 ND 0.0000005	<0.001 0.004 0.005 0.005 0.0024	<0.005 ND <0.01 ND 0.0038	<0.000001 0.000007 0.00018 0.00018 0.000098	<0.001 0.003 0.038 0.038 0.012	0.022 0.022 0.28 0.28 0.11	<0.000001 0.000002 0.00001 0.00001 0.000042	<0.001 ND <0.05 ND 0.013	<0.001 ND <0.01 ND 0.0028	<0.001 ND <0.002 ND 0.00075	0.025 0.025 0.602 0.602 0.22	0.077 (0.077 (1.415 1.415 0.6	0.077 0.077 1.33 1.33 0.52	0.015 0.015 0.262 0.262 0.14	0.01 0.01 0.52 0.52 0.22	0.000002 0.000002 <0.000005 0.0000044 0.0000028	0.00001 0.00001 0.00034 0.00034 0.00012
Number of Detects Minimum Concentr Minimum Detect Maximum Concent Maximum Detect Average Concentra Median Concentrat	tration fration ration*			0 <0.001 ND <0.002 ND 0.00075 0.00075	0 <0.001 ND <0.001 ND	0 <0.0000004 ND <0.000001 ND 0.00000035 0.00000035	0 <0.005 ND <0.1 ND 0.026	0 <0.002 ND <0.005 ND 0.0018 0.00175	0 <0.005 ND <0.5 ND 0.13 0.12625	0 <0.005 ND <0.05 ND 0.014 0.01375	0 <0.002 ND <0.005 ND 0.0018 0.00175	0 <0.005 ND <0.05 ND 0.014 0.01375	4 <0.001 0.005 0.02 0.02 0.0081 0.00595	5 0.012 0.012 0.088 0.088 0.037 0.029	0 <0.001 ND <0.002 ND 0.00075	0 <0.001 ND <0.002 ND 0.00075	0 <0.001 ND <0.005 ND 0.0015	4 <0.001 0.006 0.032 0.032 0.013 0.008	0.004 0.004 0.2 0.2 0.074 0.0415	0.011 0.011 0.085 0.085 0.045 0.0375	0.007 < 0.007 0.16 < 0.16 0.075 0 0.0635 0	<0.000001 ND <0.000001 ND	<0.001 0.004 0.005 0.005 0.0024 0.00225	<0.005 ND <0.01 ND 0.0038 0.00375	<0.000001 0.000007 0.00018 0.00018 0.000098 0.00001155	<0.001 0.003 0.038 0.038 0.012 0.0085	0.022 0.022 0.28 0.28 0.11 0.0865	<0.000001 0.000002 0.00001 0.00001 0.000042 0.000002	<0.001 ND <0.05 ND 0.013 0.01275	<0.001 ND <0.01 ND 0.0028 0.00275	<0.001 ND <0.002 ND 0.00075 0.00075	0.025 0.025 0.602 0.602 0.22 0.035	0.077 (0.077 (1.415 (1.415 (0.6 (0.435 (0.077 0.077 1.33 1.33 0.52 0.139	0.015 0.015 0.262 0.262 0.14 0.155	0.01 0.01 0.52 0.52 0.22 0.17	0.000002 0.000002 <0.000005 0.0000044 0.0000028 0.0000025	0.00001 0.00001 0.00034 0.00034 0.00012 0.0000555
Number of Detects Minimum Concentr Minimum Detect Maximum Concent Maximum Detect Average Concentra Median Concentrat Standard Deviation	rration tration ration tration tration			0 <0.001 ND <0.002 ND 0.00075 0.00075	0 <0.001 ND <0.001 ND 0.0005 0.0005	0 <0.0000004 ND <0.000001 ND 0.00000035 0.00000035	0 <0.005 ND <0.1 ND 0.026 0.02625	0 <0.002 ND <0.005 ND 0.0018 0.00175	0 <0.005 ND <0.5 ND 0.13 0.12625 0.14	0 <0.005 ND <0.05 ND 0.014 0.01375 0.012	0 <0.002 ND <0.005 ND 0.0018 0.00175 0.00082	0 <0.005 ND <0.05 ND 0.014 0.01375 0.012	4 <0.001 0.005 0.02 0.02 0.0081 0.00595	5 0.012 0.012 0.088 0.088 0.037 0.029 0.031	0 <0.001 ND <0.002 ND 0.00075 0.00075	0 <0.001 ND <0.002 ND 0.00075 0.00075	0 <0.001 ND <0.005 ND 0.0015 0.0015	4 <0.001 0.006 0.032 0.032 0.013 0.008 0.014	0.004 0.004 0.2 0.2 0.074 0.0415 0.083	0.011 0.011 0.085 0.085 0.045 0.0375 0.034	0.007 < 0.007 0.16 < 0.16 0.075 0 0.0635 0 0.067	ND ND 0.000001 ND 0.000005 0.000005	<0.001 0.004 0.005 0.005 0.0024 0.00225 0.0021	<0.005 ND <0.01 ND 0.0038 0.00375 0.0014	<0.000001 0.000007 0.00018 0.00018 0.00098 0.0001155 0.000083	<0.001 0.003 0.038 0.038 0.012 0.0085 0.014	0.022 0.022 0.28 0.28 0.11 0.0865 0.1	<0.000001 0.000002 0.00001 0.00001 0.0000042 0.000002 0.0000051	<0.001 ND <0.05 ND 0.013 0.01275 0.013	<0.001 ND <0.01 ND 0.0028 0.00275 0.0025	<0.001 ND <0.002 ND 0.00075 0.00075	0.025 0.025 0.602 0.602 0.22 0.035 0.33	0.077 (0.077 (1.415 (1.415 (0.6 (0.435 (0.55 (0.077 0.077 1.33 1.33 0.52 0.139 0.71	0.015 0.015 0.262 0.262 0.14 0.155 0.11	0.01 0.01 0.52 0.52 0.22 0.17 0.21	0.000002 0.000002 <0.000005 0.0000044 0.0000028 0.0000025 0.0000084	0.00001 0.00001 0.00034 0.00034 0.00012 0.0000555 0.00014
Number of Detects Minimum Concentr Minimum Detect Maximum Concentr Maximum Detect Average Concentra Median Concentrat Standard Deviation 95% UCL (Student)	rration tration ration tration tration			0 <0.001 ND <0.002 ND 0.00075 0.00075	0 <0.001 ND <0.001 ND 0.0005 0.0005	0 <0.0000004 ND <0.000001 ND 0.00000035 0.00000035	0 <0.005 ND <0.1 ND 0.026 0.02625	0 <0.002 ND <0.005 ND 0.0018 0.00175	0 <0.005 ND <0.5 ND 0.13 0.12625 0.14	0 <0.005 ND <0.05 ND 0.014 0.01375 0.012	0 <0.002 ND <0.005 ND 0.0018 0.00175 0.00082	0 <0.005 ND <0.05 ND 0.014 0.01375 0.012	4 <0.001 0.005 0.02 0.02 0.0081 0.00595 0.0081 0.0148	5 0.012 0.012 0.088 0.088 0.037 0.029 0.031 0.0623	0 <0.001 ND <0.002 ND 0.00075	0 <0.001 ND <0.002 ND 0.00075 0.00075	0 <0.001 ND <0.005 ND 0.0015 0.0015	4 <0.001 0.006 0.032 0.032 0.013 0.008 0.014 0.0249	0.004 0.004 0.2 0.2 0.074 0.0415 0.083 0.142	0.011 0.011 0.085 0.085 0.045 0.0375 0.034 0.0729	0.007 < 0.007 0.16 < 0.16 0.075 0 0.0635 0 0.067 0.13 0	ND ND <0.000001 ND 0.0000005	<0.001 0.004 0.005 0.005 0.0024 0.00225 0.0021 0.00417	<0.005 ND <0.01 ND 0.0038 0.00375 0.0014	<0.000001 0.000007 0.00018 0.00018 0.00098 0.0001155 0.000083	<0.001 0.003 0.038 0.038 0.012 0.0085 0.014 0.0239	0.022 0.022 0.28 0.28 0.11 0.0865 0.1 0.196	<0.000001 0.000002 0.00001 0.00001 0.000042 0.000002	<0.001 ND <0.05 ND 0.013 0.01275 0.013	<0.001 ND <0.01 ND 0.0028 0.00275 0.0025	<0.001 ND <0.002 ND 0.00075 0.00075	0.025 0.025 0.602 0.602 0.22 0.035 0.33	0.077 (0.077 (1.415 (1.415 (0.6 (0.435 (0.55 (1.053 (0.077 0.077 1.33 1.33 0.52 0.139 0.71 1.706	0.015 0.015 0.262 0.262 0.14 0.155 0.11 0.235	0.01 0.01 0.52 0.52 0.22 0.17 0.21 (0.397 0.00	0.000002 0.000002 <0.000005 0.0000044 0.0000028 0.0000025 0.0000084 .0000035058	0.00001 0.00001 0.00034 0.00034 0.00012 0.0000555 0.00014
Number of Detects Minimum Concentr Minimum Detect Maximum Concent Maximum Detect Average Concentra Median Concentrat Standard Deviation	rration tration ration tration tration			0 <0.001 ND <0.002 ND 0.00075 0.00075 0.00027 0.00097529	0 <0.001 ND <0.001 ND 0.0005 0.0005	0 <0.0000004 ND <0.000001 ND 0.00000035 0.00000035 0.00000016	0 <0.005 ND <0.1 ND 0.026 0.02625 0.02625 0.02677	0 <0.002 ND <0.005 ND 0.0018 0.00175 0.00082 0.00243	0 <0.005 ND <0.5 ND 0.13 0.12625 0.14 0.238	0 <0.005 ND <0.05 ND 0.014 0.01375 0.012 0.0239	0 <0.002 ND <0.005 ND 0.0018 0.00175 0.00082 0.00243	0 <0.005 ND <0.05 ND 0.014 0.01375 0.012 0.0239	4 <0.001 0.005 0.02 0.02 0.0081 0.00595	5 0.012 0.012 0.088 0.088 0.037 0.029 0.031	0 <0.001 ND <0.002 ND 0.00075 0.00075 0.00027	0 <0.001 ND <0.002 ND 0.00075 0.00075 0.00027	0 <0.001 ND <0.005 ND 0.0015 0.0011 0.0024	4 <0.001 0.006 0.032 0.032 0.013 0.008 0.014	0.004 0.004 0.2 0.2 0.074 0.0415 0.083	0.011 0.011 0.085 0.085 0.045 0.0375 0.034	0.007 < 0.007 0.16 < 0.16 0.075 0 0.0635 0 0.067	ND 0.000001 ND 0.000005 0.000005 0.000005	<0.001 0.004 0.005 0.005 0.0024 0.00225 0.0021	<0.005 ND <0.01 ND 0.0038 0.00375 0.0014 0.00488	<0.000001 0.000007 0.00018 0.00018 0.00098 0.0001155 0.000083 0.00016619	<0.001 0.003 0.038 0.038 0.012 0.0085 0.014	0.022 0.022 0.28 0.28 0.11 0.0865 0.1	<0.000001 0.000002 0.00001 0.00001 0.000042 0.000002 0.0000051 0.000012777	<0.001 ND <0.05 ND 0.013 0.01275 0.013 0.0238	<0.001 ND <0.01 ND 0.0028 0.00275 0.0025	<0.001 ND <0.002 ND 0.00075 0.00075 0.00027	0.025 0.025 0.602 0.602 0.22 0.035 0.33	0.077 0.077 1.415 1.415 0.6 0.435 0.55 1.053 100	0.077 0.077 1.33 1.33 0.52 0.139 0.71 1.706	0.015 0.015 0.262 0.262 0.14 0.155 0.11 0.235	0.01 0.01 0.52 0.52 0.22 0.17 0.21	0.000002 0.000002 <0.000005 0.0000044 0.0000028 0.0000025 0.0000084	0.00001 0.00001 0.00034 0.00034 0.00012 0.0000555 0.00014

On behalf of School Infrastructure New South Wales														VI III	IIII10V	auloi
TABLE 3. Metals ar	nd Ind	organic	S													
			Ammonia as N	Chloride	Cyanide Total	Nitrogen (Total)	Sulphide	Lead	Arsenic	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Copper	Mercury	Nickel	Zinc
			μg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		LOR	5	1	0.005	200	0.1	0.001	0.001	0.0001	0.005	0.001	0.001	0.00005	0.001	0.001
ANZG (2018) Freshwater 95% LOSP Toxicant	DGVs (Ma	arch 2021)	900					0.0034	0.024 (III)	0.0002	0.001		0.0014	0.0006	0.011	0.008
ANZG (2018) Marine Water 95% LOSP Toxica	ant DGVs (I	March 2021)	910					0.0044	0.0023 (III)	0.0055	0.0044		0.0013	0.0004	0.07	0.015
PFAS NEMP 2020 Freshwater 95%																
PFAS NEMP 2020 Interim Marine 95%																
NEPM 2013 Table 1C GILs, Fresh Waters					0.007			0.0034		0.0002	0.001		0.0014	0.00006	0.011	0.008
NEPM 2013 Table 1C GILs, Marine Waters					0.004			0.0044		0.0007	0.0044		0.0013	0.0001	0.007	0.015
NEPM 2013 Table 1A(4) Res HSL A & B GW f	or Vapour I	Intrusion, Clay														
NEPM 2013 Table 1A(4) Rec HSL C GW for V	apour Intru	sion, Clay														

Lab Report Number	Sample Code	Field ID	Date														
315215	315215-1	MW04	25/01/23	440													
315215	315215-2	MW05	25/01/23	230													
315215	315215-3	MW06	25/01/23	7,800													
306283	306283-1	MW01	20/09/22	41					0.01	0.004	< 0.0001	< 0.005	0.011	0.009	<0.00005	0.009	0.03
306283	306283-2	MW02	20/09/22	10,000					0.008	0.027	< 0.0001	< 0.005	0.031	0.029	<0.00005	0.005	0.14
306283	306283-3	MW03	20/09/22	17					0.001	< 0.001	< 0.0001	< 0.005	0.002	0.002	<0.00005	0.002	0.015
902403	S22-JI0001340	MW01	28/06/22	90	1,200	< 0.005	<200	< 0.1	< 0.001	0.001	<0.0002	< 0.005	< 0.001	0.004			0.064
902403	S22-JI0001341	MW02	28/06/22	8,700	660	< 0.005	18,000	< 0.1	< 0.001	0.009	<0.0002	0.024	0.012	0.002	< 0.0001	0.005	0.086
902403	S22-JI0001342	MW03	28/06/22	30	59	< 0.005	200	< 0.1	< 0.001	< 0.001	<0.0002	<0.005	< 0.001	0.006	<0.0001	0.003	0.030

Statistics

Number of Results		3	3	3	3	3	3	3	3	3	3	3	3	3	3
Number of Detects		3	3	0	2	0	3	2	0	1	3	3	0	3	3
Minimum Concentration		30	59	<0.005	200	<0.1	0.001	<0.001	<0.0001	<0.005	0.002	0.002	<0.00005	0.002	0.015
Minimum Detect		30	59	ND	200	ND	0.001	0.004	ND	0.024	0.002	0.002	ND	0.002	0.015
Maximum Concentration		8,700	1,200	<0.005	18,000	<0.1	0.01	0.027	<0.0001	0.024	0.031	0.029	<0.00005	0.009	0.14
Maximum Detect		8,700	1,200	ND	18,000	ND	0.01	0.027	ND	0.024	0.031	0.029	ND	0.009	0.14
Average Concentration *		2,940	640	0.0025	6,100	0.05	0.0063	0.01	0.00005	0.0097	0.015	0.013	0.000025	0.0053	0.062
Median Concentration *		90	660	0.0025	200	0.05	0.008	0.004	0.00005	0.0025	0.011	0.009	0.000025	0.005	0.03
Standard Deviation *		4,988	571	0	10,306	0	0.0047	0.014	0	0.012	0.015	0.014	0	0.0035	0.068
95% UCL (Student's-t) *		11,350	1,602	0.0025	23,474	0.05	0.0143	0.0348	0.00005	0.0306	0.0397	0.037	0.000025	0.0113	0.177
% of Detects		100	100	0	67	0	100	67	0	33	100	100	0	100	100
% of Non-Detects		0	0	100	33	100	0	33	100	67	0	0	100	0	0

^{*} A Non Detect Multiplier of 0.5 has been applied.

LOR = Laboratory limit of reporting

Environmental Standards

ANZG, March 2021, ANZG (2018) Freshwater 95% LOSP Toxicant DGVs (March 2021)

ANZG, March 2021, ANZG (2018) Marine Water 95% LOSP Toxicant DGVs (March 2021)

HEPA, January 2020, PFAS NEMP 2020 Freshwater 95%

HEPA, January 2020, PFAS NEMP 2020 Interim Marine 95%

2013, NEPM 2013 Table 1C GILs, Fresh Waters

2013, NEPM 2013 Table 1C GILs, Marine Waters

2013, NEPM 2013 Table 1A(4) Res HSL A & B GW for Vapour Intrusion, Clay

2013, NEPM 2013 Table 1A(4) Rec HSL C GW for Vapour Intrusion, Clay